scholarly journals An EMT-Related Gene Signature for Predicting Response to Adjuvant Chemotherapy in Pancreatic Ductal Adenocarcinoma

Author(s):  
Zengyu Feng ◽  
Kexian Li ◽  
Jianyao Lou ◽  
Yulian Wu ◽  
Chenghong Peng

BackgroundFor pancreatic ductal adenocarcinoma (PDAC) patients, chemotherapy failure is the major reason for postoperative recurrence and poor outcomes. Establishment of novel biomarkers and models for predicting chemotherapeutic efficacy may provide survival benefits by tailoring treatments.MethodsUnivariate cox regression analysis was employed to identify EMT-related genes with prognostic potential for DFS. These genes were subsequently submitted to LASSO regression analysis and multivariate cox regression analysis to identify an optimal gene signature in TCGA training cohort. The predictive accuracy was assessed by Kaplan–Meier (K-M), receiver operating characteristic (ROC) and calibration curves and was validated in PACA-CA cohort and our local cohort. Pathway enrichment and function annotation analyses were conducted to illuminate the biological implication of this risk signature.ResultsLASSO and multivariate Cox regression analyses selected an 8-gene signature comprised DLX2, FGF9, IL6R, ITGB6, MYC, LGR5, S100A2, and TNFSF12. The signature had the capability to classify PDAC patients with different DFS, both in the training and validation cohorts. It provided improved DFS prediction compared with clinical indicators. This signature was associated with several cancer-related pathways. In addition, the signature could also predict the response to immune-checkpoint inhibitors (ICIs)-based immunotherapy.ConclusionWe established a novel EMT-related gene signature that was capable of predicting therapeutic response to adjuvant chemotherapy and immunotherapy. This signature might facilitate individualized treatment and appropriate management of PDAC patients.

2021 ◽  
Vol 8 ◽  
Author(s):  
Zengyu Feng ◽  
Hao Qian ◽  
Kexian Li ◽  
Jianyao Lou ◽  
Yulian Wu ◽  
...  

Background: Previous prognostic signatures of pancreatic ductal adenocarcinoma (PDAC) are mainly constructed to predict the overall survival (OS), and their predictive accuracy needs to be improved. Gene signatures that efficaciously predict both OS and disease-free survival (DFS) are of great clinical significance but are rarely reported.Methods: Univariate Cox regression analysis was adopted to screen common genes that were significantly associated with both OS and DFS in three independent cohorts. Multivariate Cox regression analysis was subsequently performed on the identified genes to determine an optimal gene signature in the MTAB-6134 training cohort. The Kaplan–Meier (K-M), calibration, and receiver operating characteristic (ROC) curves were employed to assess the predictive accuracy. Biological process and pathway enrichment analyses were conducted to elucidate the biological role of this signature.Results: Multivariate Cox regression analysis determined a 7-gene signature that contained ASPH, DDX10, NR0B2, BLOC1S3, FAM83A, SLAMF6, and PPM1H. The signature had the ability to stratify PDAC patients with different OS and DFS, both in the training and validation cohorts. ROC curves confirmed the moderate predictive accuracy of this signature. Mechanically, the signature was related to multiple cancer-related pathways.Conclusion: A novel OS and DFS prediction model was constructed in PDAC with multi-cohort and cross-platform compatibility. This signature might foster individualized therapy and appropriate management of PDAC patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zengyu Feng ◽  
Peng Chen ◽  
Kexian Li ◽  
Jianyao Lou ◽  
Yulian Wu ◽  
...  

Background: Recurrence after surgery is largely responsible for the extremely poor outcomes for patients with pancreatic ductal adenocarcinoma (PDAC). Ferroptosis is implicated in chemotherapy sensitivity and tumor recurrence, we aimed to find out survival-associated ferroptosis-related genes and use them to build a practical risk model with the purpose to predict PDAC recurrence.Methods: Univariate Cox regression analysis was conducted to obtain prognostic ferroptosis-related genes in The Cancer Genome Atlas (TCGA, N = 140) cohort. Multivariate Cox regression analysis was employed to construct a reliable and credible gene signature. The prognostic performance was verified in a MTAB-6134 (N = 286) validation cohort and a PACA-CA (N = 181) validation cohort. The stability of the signature was tested in TCGA and MTAB-6134 cohorts by ROC analyses. Pathway enrichment analysis was adopted to preliminary illuminate the biological relevance of the gene signature.Results: Univariate and multivariate Cox regression analyses identified a 5-gene signature that contained CAV1, DDIT4, SLC40A1, SRXN1 and TFAP2C. The signature could efficaciously stratify PDAC patients with different recurrence-free survival (RFS), both in the training and validation cohorts. Results of subgroup receiver operating characteristic curve (ROC) analyses confirmed the stability and the independence of this signature. Our signature outperformed clinical indicators and previous reported models in predicting RFS. Moreover, the signature was found to be closely associated with several cancer-related and drug response pathways.Conclusion: This study developed a precise and concise prognostic model with the clinical implication in predicting PDAC recurrence. These findings may facilitate individual management of postoperative recurrence in patients with PDAC.


2021 ◽  
Vol 15 ◽  
pp. 117955492110241
Author(s):  
Hongkai Zhuang ◽  
Zixuan Zhou ◽  
Zuyi Ma ◽  
Shanzhou Huang ◽  
Yuanfeng Gong ◽  
...  

Background: The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) of pancreatic head remains poor, even after potentially curative R0 resection. The aim of this study was to develop an accurate model to predict patients’ prognosis for PDAC of pancreatic head following pancreaticoduodenectomy. Methods: We retrospectively reviewed 112 patients with PDAC of pancreatic head after pancreaticoduodenectomy in Guangdong Provincial People’s Hospital between 2014 and 2018. Results: Five prognostic factors were identified using univariate Cox regression analysis, including age, histologic grade, American Joint Committee on Cancer (AJCC) Stage 8th, total bilirubin (TBIL), CA19-9. Using all subset analysis and multivariate Cox regression analysis, we developed a nomogram consisted of age, AJCC Stage 8th, perineural invasion, TBIL, and CA19-9, which had higher C-indexes for OS (0.73) and RFS (0.69) compared with AJCC Stage 8th alone (OS: 0.66; RFS: 0.67). The area under the curve (AUC) values of the receiver operating characteristic (ROC) curve for the nomogram for OS and RFS were significantly higher than other single parameter, which are AJCC Stage 8th, age, perineural invasion, TBIL, and CA19-9. Importantly, our nomogram displayed higher C-index for OS than previous reported models, indicating a better predictive value of our model. Conclusions: A simple and practical nomogram for patient prognosis in PDAC of pancreatic head following pancreaticoduodenectomy was established, which shows satisfactory predictive efficacy and deserves further evaluation in the future.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Xin Zhao ◽  
Di Cao ◽  
Zhangyong Ren ◽  
Zhe Liu ◽  
Shaocheng Lv ◽  
...  

Abstract Background: Hypermethylation of gene promoters plays an important role in tumorigenesis. The present study aimed to identify and validate promoter methylation-driven genes (PMDGs) for pancreatic ductal adenocarcinoma (PDAC). Methods: Based on GSE49149 and the PDAC cohort of The Cancer Genome Atlas (TCGA), differential analyses of promoter methylation, correlation analysis, and Cox regression analysis were performed to identify PMDGs. The promoter methylation level was assessed by bisulfite sequencing polymerase chain reaction (BSP) in paired tumor and normal tissues of 72 PDAC patients. Kaplan−Meier survival analyses were performed to evaluate the clinical value of PMDGs. Results: In GSE49149, the β-value of the dipeptidyl peptidase like 6 (DPP6) promoter was significantly higher in tumor compared with normal samples (0.50 vs. 0.24, P<0.001). In the PDAC cohort of TCGA, the methylation level of the DPP6 promoter was negatively correlated with mRNA expression (r = −0.54, P<0.001). In a multivariate Cox regression analysis, hypermethylation of the DPP6 promoter was an independent risk factor for PDAC (hazard ratio (HR) = 543.91, P=0.002). The results of BSP revealed that the number of methylated CG sites in the DPP6 promoter was greater in tumor samples than in normal samples (7.43 vs. 2.78, P<0.001). The methylation level of the DPP6 promoter was moderately effective at distinguishing tumor from normal samples (area under ROC curve (AUC) = 0.74, P<0.001). Hypermethylation of the DPP6 promoter was associated with poor overall (HR = 3.61, P<0.001) and disease-free (HR = 2.01, P=0.016) survivals for PDAC patients. Conclusion: These results indicate that DPP6 promoter methylation is a potential prognostic biomarker for PDAC.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


Author(s):  
Zengyu Feng ◽  
Kexian Li ◽  
Jianyao Lou ◽  
Mindi Ma ◽  
Yulian Wu ◽  
...  

The aim of any surgical resection for pancreatic ductal adenocarcinoma (PDAC) is to achieve tumor-free margins (R0). R0 margins give rise to better outcomes than do positive margins (R1). Nevertheless, postoperative morbidity after R0 resection remains high and prognostic gene signature predicting recurrence risk of patients in this subgroup is blank. Our study aimed to develop a DNA replication-related gene signature to stratify the R0-treated PDAC patients with various recurrence risks. We conducted Cox regression analysis and the LASSO algorithm on 273 DNA replication-related genes and eventually constructed a 7-gene signature. The predictive capability and clinical feasibility of this risk model were assessed in both training and external validation sets. Pathway enrichment analysis showed that the signature was closely related to cell cycle, DNA replication, and DNA repair. These findings may shed light on the identification of novel biomarkers and therapeutic targets for PDAC.


2020 ◽  
Author(s):  
Ruihua Fang ◽  
Lin Chen ◽  
Jing Liao ◽  
Jierong Luo ◽  
Chenchen Zhang ◽  
...  

Abstract Background: Head and neck squamous cell carcinoma (HNSCC), the most frequent subtype of head and neck cancer, continues to have a poor prognosis with no improvement. Growing evidence has demonstrated that the immune system plays a crucial role in the development and progression of HNSCC. The goal of our study was to develop an immune-related signature for accurately predicting the survival of HNSCC patients. Methods: Gene expression profiles were established from a total of 546 HNSCC and normal tissues to establish a training set and 83 HNSCC tissues for a validation set. Differentially expressed prognostic immune genes were identified by univariate Cox regression analysis and a corresponding network of differentially expressed transcription factors (TFs) were identified using Cytoscape. The immune-related gene signature was established and validated by univariate Cox regression analysis, least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses. In addition, the prognostic value of the immune-related signature was analyzed by survival and Cox regression analysis. Finally, the correlation between the immune-related signature and the immune microenvironment was established.Results: In this study, the TF-mediated network revealed that Foxp3 plays a central role in the regulatory mechanism of most immune genes. A prognostic signature based on 10 immune-related genes, which divided patients into high and low risk groups, was developed and successfully validated using two independent databases. Our prognostic signature was significantly related to worse survival and predicted prognosis in patients with different clinicopathological factors. A nomogram including clinical characteristics was also constructed for accurate prediction. Furthermore, it was determined that our prognostic signature may act as an independent factor for predicting the survival of HNSCC patients. ROC analysis also revealed that our signature had superior predictive value compared with TNM stage. As for the immune microenvironment, our signature showed a positive correlation with activated mast cells and M0 macrophages, a negative correlation with Tregs, and immune checkpoint molecules PD-1 and CLTA-4. Conclusions: Our study established an immune-related gene signature, which not only provides a promising biomarker for survival prediction, but may be evaluated as an indicator for personalized immunotherapy in patients with HNSCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Zhu ◽  
Liqun Gu ◽  
Mianfeng Yao ◽  
Jiang Li ◽  
Changyun Fang

The prognosis and immunotherapy response rates are unfavorable in patients with oral squamous cell carcinoma (OSCC). The tumor microenvironment is associated with tumor prognosis and progression, and the underlying mechanisms remain unclear. We obtained differentially expressed immune-related genes from OSCC mRNA data in The Cancer Genome Atlas (TCGA) database. Overall survival-related risk signature was constructed by univariate Cox regression analysis and LASSO Cox regression analysis. The prognostic performance was validated with receiver operating characteristic (ROC) analysis and Kaplan–Meier survival curves in the TCGA and Gene Expression Omnibus (GEO) datasets. The risk score was confirmed to be an independent prognostic factor and a nomogram was built to quantify the risk of outcome for each patient. Furthermore, a negative correlation was observed between the risk score and the infiltration rate of immune cells, as well as the expression of immunostimulatory and immunosuppressive molecules. Functional enrichment analysis between different risk score subtypes detected multiple immune-related biological processes, metabolic pathways, and cancer-related pathways. Thus, the immune-related gene signature can predict overall survival and contribute to the personalized management of OSCC patients.


Author(s):  
Sivesh K. Kamarajah ◽  
Steven A. White ◽  
Samer A. Naffouje ◽  
George I Salti ◽  
Fadi Dahdaleh

Abstract Background Data supporting the routine use of adjuvant chemotherapy (AC) compared with no AC (noAC) following neoadjuvant chemotherapy (NAC) and resection for pancreatic ductal adenocarcinoma (PDAC) are lacking. This study aimed to determine whether AC improves long-term survival in patients receiving NAC and resection. Methods Patients receiving resection for PDAC following NAC from 2004 to 2016 were identified from the National Cancer Data Base (NCDB). Patients with a survival rate of < 6 months were excluded to account for immortal time bias. Propensity score matching (PSM) and Cox regression analysis were performed to account for selection bias and analyze the impact of AC on overall survival. Results Of 4449 (68%) noAC patients and 2111 (32%) AC patients, 2016 noAC patients and 2016 AC patients remained after PSM. After matching, AC was associated with improved survival (median 29.4 vs. 24.9 months; p < 0.001), which remained after multivariable adjustment (HR 0.81, 95% confidence interval [CI] 0.75–0.88; p < 0.001). On multivariable interaction analyses, this benefit persisted irrespective of nodal status: N0 (hazard ratio [HR] 0.80, 95% CI 0.72–0.90; p < 0.001), N1 (HR 0.76, 95% CI 0.67–0.86; p < 0.001), R0 margin status (HR 0.82, 95% CI 0.75–0.89; p < 0.001), R1 margin status (HR 0.77, 95% CI 0.64–0.93; p = 0.007), no neoadjuvant radiotherapy (NART; HR 0.84, 95% CI 0.74–0.96; p = 0.009), and use of NART (HR 0.80, 95% CI 0.73–0.88; p < 0.001). Stratified analysis by nodal, margin, and NART status demonstrated consistent results. Conclusion AC following NAC and resection is associated with improved survival, even in margin-negative and node-negative disease. These findings suggest completing planned systemic treatment should be considered in all resected PDACs previously treated with NAC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ruiqi Zhu ◽  
Huishan Tao ◽  
Wenyi Lin ◽  
Liang Tang ◽  
Yu Hu

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by highly heterogeneous molecular lesions and cytogenetic abnormalities. Immune disorders in AML and impaired immune cell function have been found to be associated with abnormal karyotypes in AML patients. Immunotherapy has become an alternative therapeutic method that can improve the outcomes of AML patients. For solid tumors, the expression patterns of genes associated with the immune microenvironment provide valuable prognostic information. However, the prognostic roles of immune genes in AML have not been studied as yet. In this study, we identified 136 immune-related genes associated with overall survival in AML patients through a univariate Cox regression analysis using data from TCGA-AML and GTEx datasets. Next, we selected 24 hub genes from among the 136 genes based on the PPI network analysis. The 24 immune-related hub genes further underwent multivariate Cox regression analysis and LASSO regression analysis. Finally, a 6 immune-related gene signature was constructed to predict the prognosis of AML patients. The function of the hub IRGs and the relationships between hub IRGs and transcriptional factors were investigated. We found that higher levels of expression of CSK, MMP7, PSMA7, PDCD1, IKBKG, and ISG15 were associated with an unfavorable prognosis of AML patients. Meanwhile, patients in the TCGA-AML datasets were divided into a high risk score group and a low risk score group, based on the median risk score value. Patients in the high risk group tended to show poorer prognosis [P = 0.00019, HR = 1.89 (1.26–2.83)]. The area under the curve (AUC) was 0.6643. Multivariate Cox Regression assay confirmed that the 6 IRG signature was an independent prognostic factor for AML. The prognostic role of the immune related-gene signature was further validated using an independent AML dataset, GSE37642. In addition, patients in the high risk score group in the TCGA dataset were found to be of an advanced age, IDH mutation, and M5 FAB category. These results suggested that the proposed immune related-gene signature may serve as a potential prognostic tool for AML patients.


Sign in / Sign up

Export Citation Format

Share Document