scholarly journals How Smooth Muscle Contractions Shape the Developing Enteric Nervous System

Author(s):  
Nicolas R. Chevalier ◽  
Richard J. Amedzrovi Agbesi ◽  
Yanis Ammouche ◽  
Sylvie Dufour

Neurons and glia of the enteric nervous system (ENS) are constantly subject to mechanical stress stemming from contractions of the gut wall or pressure of the bolus, both in adulthood and during embryonic development. Because it is known that mechanical forces can have long reaching effects on neural growth, we investigate here how contractions of the circular smooth muscle of the gut impact morphogenesis of the developing fetal ENS, in chicken and mouse embryos. We find that the number of enteric ganglia is fixed early in development and that subsequent ENS morphogenesis consists in the anisotropic expansion of a hexagonal honeycomb (chicken) or a square (mouse) lattice, without de-novo ganglion formation. We image the deformations of the ENS during spontaneous myogenic motility and show that circular smooth muscle contractile waves induce longitudinal strain on the ENS network; we rationalize this behavior by mechanical finite element modeling of the incompressible gut wall. We find that the longitudinal anisotropy of the ENS vanishes when contractile waves are suppressed in organ culture, showing that these contractile forces play a key role in sculpting the developing ENS. We conclude by summarizing different key events in the fetal development of the ENS and the role played by mechanics in the morphogenesis of this unique nerve network.

2020 ◽  
Author(s):  
Laura Kuil ◽  
Katherine C. MacKenzie ◽  
Clara S Tang ◽  
Jonathan D. Windster ◽  
Thuy Linh Le ◽  
...  

AbstractBackgroundHirschsprung disease (HSCR) is characterized by absence of ganglia in the intestine. Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). HSCR is a complex genetic disease in which the loss of enteric ganglia stems from a combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Pinpointing the responsible culprits within a large CNV is challenging as often many genes are affected. We investigated if we could find deleterious CNVs and if we could identify the genes responsible for the aganglionosis.ResultsDeleterious CNVs were detected in three groups of patients: HSCR-AAM, HSCR patients with a confirmed causal genetic variant and HSCR-isolated patients without a known causal variant and controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that HSCR-AAM patients had larger copy number losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes in Copy Number Losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1 and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression in vivo.ConclusionRare large Copy Number losses - often de novo - contribute to the disease in HSCR-AAM patients specifically. We proved the involvement of five genes in enteric nervous system development and Hirschsprung disease.


Author(s):  
Colin Musara ◽  
Camille Vaillant

The distribution of interstitial cells of Cajal (ICC), the probable pacemakers in gastrointestinal motility, was investigated using an antigenic marker of gastric ICC known as C-Kit. Antiserum raised against the general neuronal marker protein gene peptide 9.5 (PGP) as well as the nitrergic neuronal marker neuronal nitric oxide synthase (nNOS) were used to investigate the distribution of gastric nerves. Polyclonal goat anti-human C-Kit was reliable in labelling ICC in the stomach. Two classes of ICC were identified according to their distribution: ICC-MY distributed around the periphery of myenteric ganglia and ICC-IM in the circular and longitudinal muscle layers. The neuronal marker PGP was reliably consistent in revealing the density and distribution of the enteric nervous system. Density of nerve fibres was higher in circular smooth muscle than in longitudinal smooth muscle. From nNOS immunohistochemistry, it is evident that inhibitory (nitrergic) nerves constitute a substantial fraction of the enteric nervous system.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nick J. Spencer ◽  
Lee Travis ◽  
Lukasz Wiklendt ◽  
Marcello Costa ◽  
Timothy J. Hibberd ◽  
...  

AbstractHow the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2785-2796 ◽  
Author(s):  
Alan J. Burns ◽  
Jean-Marie M. Delalande ◽  
Nicole M. Le Douarin

The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.


2020 ◽  
Vol 318 (2) ◽  
pp. G244-G253 ◽  
Author(s):  
Nick J. Spencer ◽  
Lee Travis ◽  
Lukasz Wiklendt ◽  
Timothy J. Hibberd ◽  
Marcello Costa ◽  
...  

The mechanisms underlying electrical rhythmicity in smooth muscle of the proximal colon are incompletely understood. Our aim was to identify patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated whole mouse colon and characterize their mechanisms of origin. Two independent extracellular recording electrodes were used to record the patterns of electrical activity in smooth muscle of the proximal region of whole isolated mouse colon. Cross-correlation analysis was used to quantify spatial coordination of these electrical activities over increasing electrode separation distances. Four distinct neurogenic patterns of electrical rhythmicity were identified in smooth muscle of the proximal colon, three of which have not been identified and consisted of bursts of rhythmic action potentials at 1–2 Hz that were abolished by hexamethonium. These neurogenic patterns of electrical rhythmicity in smooth muscle were spatially and temporally synchronized over large separation distances (≥2 mm rosto-caudal axis). Myogenic slow waves could be recorded from the same preparations, but they showed poor spatial and temporal coordination over even short distances (≤1 mm rostro-caudal axis). It is not commonly thought that electrical rhythmicity in gastrointestinal smooth muscle is dependent upon the enteric nervous system. Here, we identified neurogenic patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated mouse colon, which are dependent on synaptic transmission in the enteric nervous system. If the whole colon is studied in vitro, recordings can preserve novel neurogenic patterns of electrical rhythmicity in smooth muscle. NEW & NOTEWORTHY Previously, it has not often been thought that electrical rhythmicity in smooth muscle of the gastrointestinal tract is dependent upon the enteric nervous system. We identified patterns of electrical rhythmicity in smooth muscle of the mouse proximal colon that were abolished by hexamethonium and involved the temporal synchronization of smooth muscle membrane potential over large spatial fields. We reveal different patterns of electrical rhythmicity in colonic smooth muscle that are dependent on the ENS.


2018 ◽  
Vol 38 (24) ◽  
pp. 5507-5522 ◽  
Author(s):  
Nick J. Spencer ◽  
Timothy J. Hibberd ◽  
Lee Travis ◽  
Lukasz Wiklendt ◽  
Marcello Costa ◽  
...  

2011 ◽  
Vol 56 (No. 11) ◽  
pp. 551-560 ◽  
Author(s):  
A. Czujkowska ◽  
MB Arciszewski

 Corticotropin releasing factor (CRF), a 41-amino acid neuropeptide widely distributed in the mammalian central nervous system, has been shown to influence several gastrointestinal functions. Recent studies show that CRF released locally from enteric nerves may also underlie alterations in gut function. In this study, immunohistochemisty was applied to demonstrate the presence of CRF in the jejunum of sheep. Using double immunohistochemical staining the co-localization of CRF with vasoactive intestinal peptide (VIP), galanin, tyrosine hydroxylase (TH), neuropeptide Y (NPY) and substance P (SP) was evaluated. The presence of CRF was detected in myenteric neurons (3.6 ± 0.9%) as well as in submucous neurons (10.5 ± 1.2%). In the ovine jejunum different numbers of CRF-expressing nerve fibres were detected in myenteric ganglia, submucous ganglia, circular smooth muscle layer, lamina muscularis mucosae and between mucosal glands. None of the CRF-positive enteric neurons and CRF-positive nerve fibres exhibited the presence of TH. CRF-immunoreactive (IR) myenteric neurons widely co-expressed VIP and/or NPY. A minor population of CRF-IR myenteric neurons additionally co-stored SP. Galanin was not present in CRF-IR myenteric neurons. The presence of VIP was observed in the vast majority of CRF-positive submucous neurons. Moderate numbers of CRF-IR sumbucous neurons co-expressing galanin or NPY were also found. The presence of SP in CRF-positive submucous neurons was noted only incidentally. In the circular smooth muscle layer CRF-IR/VIP-IR, CRF-IR/NPY-IR as well as CRF-IR/SP-IR nerve fibres were present. In the mucosal layer of the ovine jejunum CRF-IR nerve fibres co-stored additionally VIP, galanin, NPY or SP. This present study provides for the first time evidence that CRF present in different subclasses of enteric neurons may influence certain activities of the ovine jejunum. Co-localization studies indicate that VIP, galanin, SP and NPY functionally co-operate with CRF in the jejunum of the sheep.  


2017 ◽  
Author(s):  
Qianqian Wang ◽  
Ke Wang ◽  
R. Sergio Solorzano-Vargas ◽  
Po-Yu Lin ◽  
Christopher M. Walthers ◽  
...  

AbstractAlthough critical for studies of gut motility and intestinal regeneration, the in vitro culture of intestinal muscularis with peristaltic function remains a significant challenge. Periodic contractions of intestinal muscularis result from the coordinated activity of smooth muscle cells (SMC), the enteric nervous system (ENS), and interstitial cells of Cajal (ICC). Reproducing this activity requires the preservation of all these cells in one system. Here we report the first serum-free culture methodology that consistently maintains spontaneous and periodic contractions of murine and human intestinal muscularis cells for months. In this system, SMC expressed the mature marker myosin heavy chain, and multipolar/dipolar ICC, uniaxonal/multipolar neurons and glial cells were present. Furthermore, drugs affecting ENS, ICC or SMC altered the contractions. Combining this method with scaffolds, contracting cell sheets were formed with organized architecture. With the addition of intestinal epithelial cells, this platform enabled at least 9 types of cells from mucosa and muscularis to coexist and function. The method constitutes a powerful tool for mechanistic studies of gut motility disorders and the regeneration of full-thickness engineered intestine.In the small intestine, the mucosa processes partially digested food and absorbs nutrients while the muscularis actuates the peristaltic flow to transport luminal content aborally. Gut motility is central to its digestive and absorptive function. The intestinal muscularis contains various types of cells: of these, smooth muscle cells, the enteric nervous system (ENS)1,2, and the pacemaker interstitial cells of Cajal (ICC)3 are three important players involved in the development of gut motility. Recent studies on intestinal tissue engineering have highlighted the importance of regenerating the functional intestinal muscularis4–9. A variety of systems derived from different cell sources, including pluripotent stem cells (PSC)4–6, embryonic stem cells (ESC)7 and primary tissue8,9, have been established to accomplish this goal and different contractile activities were developed in these systems. Notably, spontaneous contractions have been generated in culture systems that contained both ICC and smooth muscle cells4,6,10–13. In addition, electrical-induced neurogenic contractions were also successfully produced4,5,8 when ENS was introduced into culture. In one of the most recent studies, both spontaneous contractions and electrical-induced neurogenic contractions were developed in a PSC-based culture system4.


2019 ◽  
Author(s):  
Phillip A. Baker ◽  
Matthew D. Meyer ◽  
Ashley Tsang ◽  
Rosa A. Uribe

AbstractThe gastrointestinal tract is constructed with an intrinsic series of interconnected ganglia that span its entire length, called the enteric nervous system (ENS). The ENS exerts critical local reflex control over many essential gut functions; including peristalsis, water balance, hormone secretions and intestinal barrier homeostasis. ENS ganglia exist as a collection of neurons and glia that are arranged in a series of plexuses throughout the gut: the myenteric plexus and submucosal plexus. While it is known that enteric ganglia are derived from a stem cell population called the neural crest, mechanisms that dictate final neuropil plexus organization remain obscure. Recently, the vertebrate animal, zebrafish, has emerged as a useful model to understand ENS development, however knowledge of its developing myenteric plexus architecture was unknown. Here, we examine myenteric plexus of the maturing zebrafish larval fish histologically over time and find that it consists of a series of tight axon layers and long glial cell processes that wrap the circumference of the gut tube to completely encapsulate it, along all levels of the gut. By late larval stages, complexity of the myenteric plexus increases such that a layer of axons is juxtaposed to concentric layers of glial cells. Ultrastructurally, glial cells contain glial filaments and make intimate contacts with one another in long, thread-like projections. Conserved indicators of vesicular axon profiles are readily abundant throughout the larval plexus neuropil. Together, these data extend our understanding of myenteric plexus architecture in maturing zebrafish, thereby enabling functional studies of its formation in the future.


2019 ◽  
Vol 317 (3) ◽  
pp. G304-G313 ◽  
Author(s):  
Ivan M. Lang ◽  
Bidyut K. Medda ◽  
Reza Shaker

An esophago-esophageal contractile reflex (EECR) of the cervical esophagus has been identified in humans. The aim of this study was to characterize and determine the mechanisms of the EECR. Cats ( n = 35) were decerebrated, electrodes were placed on pharynx and cervical esophagus, and esophageal motility was recorded using manometry. All areas of esophagus were distended to locate and quantify the EECR. The effects of esophageal perfusion of NaCl or HCl, vagus nerve or pharyngoesophageal nerve (PEN) transection, or hexamethonium administration (5 mg/kg iv) were determined. We found that distension of the esophagus at all locations activated EECR rostral to stimulus only. EECR response was greatest when the esophagus 2.5–11.5 cm from cricopharyngeus (CP) was distended. HCl perfusion activated repetitively an EECR-like response of the proximal esophagus only within 2 min, and after ~20 min EECR was inhibited. Transection of PEN blocked or inhibited EECR 1–7 cm from CP, and vagotomy blocked EECR at all locations. Hexamethonium blocked EECR at 13 and 16 cm from CP but sensitized its activation at 1–7 cm from CP. EECR of the entire esophagus exists, which is directed in the orad direction only. EECR of striated muscle esophagus is mediated by vagus nerve and PEN and inhibited by mechanoreceptors of smooth muscle esophagus. EECR of smooth muscle esophagus is mediated by enteric nervous system and vagus nerve. Activation of EECR of the striated muscle esophagus is initially sensitized by HCl exposure, which may have a role in prevention of supraesophageal reflux.NEW & NOTEWORTHY An esophago-esophageal contractile reflex (EECR) exists, which is directed in the orad direction only. EECR of the proximal esophagus can appear similar to and be mistaken for secondary peristalsis. The EECR of the striated muscle is mediated by the vagus nerve and pharyngoesophageal nerve and inhibited by mechanoreceptor input from the smooth muscle esophagus. HCl perfusion initially sensitizes activation of the EECR of the striated muscle esophagus, which may participate in prevention of supraesophageal reflux.


Sign in / Sign up

Export Citation Format

Share Document