scholarly journals Accumulation of Securin on Spindle During Female Meiosis I

Author(s):  
Tereza Pauerova ◽  
Lenka Radonova ◽  
Adela Horakova ◽  
Jason G. Knott ◽  
Martin Anger

Chromosome segregation during female meiosis is frequently incorrect with severe consequences including termination of further development or severe disorders, such as Down syndrome. Accurate chromosome segregation requires tight control of a protease called separase, which facilitates the separation of sister chromatids by cohesin cleavage. There are several control mechanisms in place, including the binding of specific protein inhibitor securin, phosphorylation by cyclin-dependent kinase 1 (CDK1), and complex with SGO2 and MAD2 proteins. All these mechanisms restrict the activation of separase for the time when all chromosomes are properly attached to the spindle. In our study, we focused on securin and compared the expression profile of endogenous protein with exogenous securin, which is widely used to study chromosome segregation. We also compared the dynamics of securin proteolysis in meiosis I and meiosis II. Our study revealed that the expression of both endogenous and exogenous securin in oocytes is compartmentalized and that this protein accumulates on the spindle during meiosis I. We believe that this might have a direct impact on the regulation of separase activity in the vicinity of the chromosomes.

2014 ◽  
Vol 204 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Ibtissem Nabti ◽  
Petros Marangos ◽  
Jenny Bormann ◽  
Nobuaki R. Kudo ◽  
John Carroll

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.


2011 ◽  
Vol 22 (16) ◽  
pp. 2848-2861 ◽  
Author(s):  
Dai Tsuchiya ◽  
Claire Gonzalez ◽  
Soni Lacefield

In many eukaryotes, disruption of the spindle checkpoint protein Mad2 results in an increase in meiosis I nondisjunction, suggesting that Mad2 has a conserved role in ensuring faithful chromosome segregation in meiosis. To characterize the meiotic function of Mad2, we analyzed individual budding yeast cells undergoing meiosis. We find that Mad2 sets the duration of meiosis I by regulating the activity of APCCdc20. In the absence of Mad2, most cells undergo both meiotic divisions, but securin, a substrate of the APC/C, is degraded prematurely, and prometaphase I/metaphase I is accelerated. Some mad2Δ cells have a misregulation of meiotic cell cycle events and undergo a single aberrant division in which sister chromatids separate. In these cells, both APCCdc20 and APCAma1 are prematurely active, and meiosis I and meiosis II events occur in a single meiotic division. We show that Mad2 indirectly regulates APCAma1 activity by decreasing APCCdc20 activity. We propose that Mad2 is an important meiotic cell cycle regulator that ensures the timely degradation of APC/C substrates and the proper orchestration of the meiotic divisions.


2017 ◽  
Vol 37 (10) ◽  
Author(s):  
Chong Wai Tio ◽  
Gregory Omerza ◽  
Timothy Phillips ◽  
Hua Jane Lou ◽  
Benjamin E. Turk ◽  
...  

ABSTRACT Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that couples spore morphogenesis to the completion of chromosome segregation. Similar to other MAPKs, Smk1 is controlled by phosphorylation of a threonine (T) and a tyrosine (Y) in its activation loop. However, it is not activated by a dual-specificity MAPK kinase. Instead, T207 in Smk1's activation loop is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase (Cak1), and Y209 is autophosphorylated in an intramolecular reaction that requires the meiosis-specific protein Ssp2. In this study, we show that Smk1 is catalytically inert unless it is bound by Ssp2. While Ssp2 binding activates Smk1 by a mechanism that is independent of activation loop phosphorylation, binding also triggers autophosphorylation of Y209 in Smk1, which, along with Cak1-mediated phosphorylation of T207, further activates the kinase. Autophosphorylation of Smk1 on Y209 also appears to modify the specificity of the MAPK by suppressing Y kinase and enhancing S/T kinase activity. We also found that the phosphoconsensus motif preference of Ssp2/Smk1 is more extensive than that of other characterized MAPKs. This study therefore defines a novel mechanism of MAPK activation requiring binding of an activator and also shows that MAPKs can be diversified to recognize unique phosphorylation motifs.


2008 ◽  
Vol 19 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Brendan M. Kiburz ◽  
Angelika Amon ◽  
Adele L. Marston

Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.


Open Biology ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Misuzu Wakiya ◽  
Eriko Nishi ◽  
Shinnosuke Kawai ◽  
Kohei Yamada ◽  
Kazuhiro Katsumata ◽  
...  

Establishment of proper chromosome attachments to the spindle requires elimination of erroneous attachments, but the mechanism of this process is not fully understood. During meiosis I, sister chromatids attach to the same spindle pole (mono-oriented attachment), whereas homologous chromosomes attach to opposite poles (bi-oriented attachment), resulting in homologous chromosome segregation. Here, we show that chiasmata that link homologous chromosomes and kinetochore component Dam1 are crucial for elimination of erroneous attachments and oscillation of centromeres between the spindle poles at meiosis I in fission yeast. In chiasma-forming cells, Mad2 and Aurora B kinase, which provides time for attachment correction and destabilizes erroneous attachments, respectively, caused elimination of bi-oriented attachments of sister chromatids, whereas in chiasma-lacking cells, they caused elimination of mono-oriented attachments. In chiasma-forming cells, in addition, homologous centromere oscillation was coordinated. Furthermore, Dam1 contributed to attachment elimination in both chiasma-forming and chiasma-lacking cells, and drove centromere oscillation. These results demonstrate that chiasmata alter attachment correction patterns by enabling error correction factors to eliminate bi-oriented attachment of sister chromatids, and suggest that Dam1 induces elimination of erroneous attachments. The coincidental contribution of chiasmata and Dam1 to centromere oscillation also suggests a potential link between centromere oscillation and attachment elimination.


Author(s):  
Jian Li ◽  
Hong-Yong Zhang ◽  
Feng Wang ◽  
Qing-Yuan Sun ◽  
Wei-Ping Qian

Recently, we have reported that the cyclin B2/CDK1 complex regulates homologous chromosome segregation through inhibiting separase activity in oocyte meiosis I, which further elucidates the compensation of cyclin B2 on cyclin B1’s function in meiosis I. However, whether cyclin B2/CDK1 complex also negatively regulates separase activity during oocyte meiosis II remains unknown. In the present study, we investigated the function of cyclin B2 in meiosis II of oocyte. We found that stable cyclin B2 expression impeded segregation of sister chromatids after oocyte parthenogenetic activation. Consistently, stable cyclin B2 inhibited separase activation, while introduction of non-phosphorylatable separase mutant rescued chromatid separation in the stable cyclin B2-expressed oocytes. Therefore, the cyclin B2/CDK1 complex conservatively regulates separase activity via inhibitory phosphorylation of separase in both meiosis I and meiosis II of mouse oocyte.


1996 ◽  
Vol 134 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
B C Williams ◽  
M Gatti ◽  
M L Goldberg

Previous efforts have shown that mutations in the Drosophila ZW10 gene cause massive chromosome missegregation during mitotic divisions in several tissues. Here we demonstrate that mutations in ZW10 also disrupt chromosome behavior in male meiosis I and meiosis II, indicating that ZW10 function is common to both equational and reductional divisions. Divisions are apparently normal before anaphase onset, but ZW10 mutants exhibit lagging chromosomes and irregular chromosome segregation at anaphase. Chromosome missegregation during meiosis I of these mutants is not caused by precocious separation of sister chromatids, but rather the nondisjunction of homologs. ZW10 is first visible during prometaphase, where it localizes to the kinetochores of the bivalent chromosomes (during meiosis I) or to the sister kinetochores of dyads (during meiosis II). During metaphase of both divisions, ZW10 appears to move from the kinetochores and to spread toward the poles along what appear to be kinetochore microtubules. Redistributions of ZW10 at metaphase require bipolar attachments of individual chromosomes or paired bivalents to the spindle. At the onset of anaphase I or anaphase II, ZW10 rapidly relocalizes to the kinetochore regions of the separating chromosomes. In other mutant backgrounds in which chromosomes lag during anaphase, the presence or absence of ZW10 at a particular kinetochore predicts whether or not the chromosome moves appropriately to the spindle poles. We propose that ZW10 acts as part of, or immediately downstream of, a tension-sensing mechanism that regulates chromosome separation or movement at anaphase onset.


2014 ◽  
Vol 22 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Anna Danylevska ◽  
Kristina Kovacovicova ◽  
Thuraya Awadova ◽  
Martin Anger

2021 ◽  
Author(s):  
Elvira Nikalayevich ◽  
Safia El Jailani ◽  
Damien Cladiere ◽  
Yulia Gryaznova ◽  
Celia Fosse ◽  
...  

To generate haploid gametes, cohesin is removed in a stepwise manner from chromosome arms in meiosis I and the centromere region in meiosis II, to segregate chromosomes and sister chromatids, respectively. Meiotic cohesin removal requires cleavage of the meiosis-specific kleisin subunit Rec8 by the protease Separase[1, 2]. In yeast, Rec8 is kept in a non-phosphorylated state by the action of PP2A-B56, which is localised to the centromere region, thereby preventing cohesin removal from this region in meiosis I[3-5]. However, it is unknown whether Rec8 has to be equally phosphorylated for cleavage, and whether centromeric cohesin protection is indeed brought about by dephosphorylation of Rec8 preventing cleavage, in mammalian meiosis. The identity of one or several potential Rec8-specific kinase(s) is also unknown. This is due to technical challenges, as Rec8 is poorly conserved preventing a direct translation of the knowledge gained from model systems such as yeast and C. elegans to mammals, and additionally, there is no turn-over of Rec8 after cohesion establishment, preventing phospho mutant analysis of functional Rec8. To address how Rec8 cleavage is brought about in mammals, we adapted a biosensor for Separase to study Rec8 cleavage in single mouse oocytes by live imaging, and identified phosphorylation sites promoting cleavage. We found that Rec8 cleavage by Separase depends on Aurora B/C kinase activity, and identified a residue promoting cleavage and being phosphorylated in an Aurora B/C kinase-dependent manner. Accordingly, inhibition of Aurora B/C kinase during meiotic maturation impairs endogenous Rec8 phosphorylation and chromosome segregation.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
James N. Brandt ◽  
Katarzyna A. Hussey ◽  
Yumi Kim

Polo-like kinases (PLKs) play widely conserved roles in orchestrating meiotic chromosome dynamics. However, how PLKs are targeted to distinct subcellular localizations during meiotic progression remains poorly understood. Here, we demonstrate that the cyclin-dependent kinase CDK-1 primes the recruitment of PLK-2 to the synaptonemal complex (SC) through phosphorylation of SYP-1 in C. elegans. SYP-1 phosphorylation by CDK-1 occurs just before meiotic onset. However, PLK-2 docking to the SC is prevented by the nucleoplasmic HAL-2/3 complex until crossover designation, which constrains PLK-2 to special chromosomal regions known as pairing centers to ensure proper homologue pairing and synapsis. PLK-2 is targeted to crossover sites primed by CDK-1 and spreads along the SC by reinforcing SYP-1 phosphorylation on one side of each crossover only when threshold levels of crossovers are generated. Thus, the integration of chromosome-autonomous signaling and a nucleus-wide crossover-counting mechanism partitions holocentric chromosomes relative to the crossover site, which ultimately defines the pattern of chromosome segregation during meiosis I.


Sign in / Sign up

Export Citation Format

Share Document