scholarly journals Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury

Author(s):  
Jiahui Tang ◽  
Yehong Zhuo ◽  
Yiqing Li

Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.

Science ◽  
2018 ◽  
Vol 360 (6396) ◽  
pp. 1447-1451 ◽  
Author(s):  
Guosong Hong ◽  
Tian-Ming Fu ◽  
Mu Qiao ◽  
Robert D. Viveros ◽  
Xiao Yang ◽  
...  

The retina, which processes visual information and sends it to the brain, is an excellent model for studying neural circuitry. It has been probed extensively ex vivo but has been refractory to chronic in vivo electrophysiology. We report a nonsurgical method to achieve chronically stable in vivo recordings from single retinal ganglion cells (RGCs) in awake mice. We developed a noncoaxial intravitreal injection scheme in which injected mesh electronics unrolls inside the eye and conformally coats the highly curved retina without compromising normal eye functions. The method allows 16-channel recordings from multiple types of RGCs with stable responses to visual stimuli for at least 2 weeks, and reveals circadian rhythms in RGC responses over multiple day/night cycles.


Author(s):  
Baptiste Coudrillier ◽  
Kristin M. Myers ◽  
Thao D. Nguyen

By 2010, 60 million people will have glaucoma, the second leading cause of blindness worldwide [1]. The disease is characterized by a progressive degeneration of the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. It is well know that elevated intraocular pressure (IOP) is a risk factor in the damage to the RGCs [3–5], but the relationship between the mechanical properties of the ocular connective tissue and how it affects cellular function is not well characterized. The cornea and the sclera are collage-rich structures that comprise the outer load-bearing shell of the eye. Their preferentially aligned collagen lamellae provide mechanical strength to resist ocular expansion. Previous uniaxial tension studies suggest that altered viscoelastic material properties of the eye wall play a role in glaucomatous damage [6].


Author(s):  
C. Ross Ethier ◽  
Richie Abel ◽  
E. A. Sander ◽  
John G. Flanagan ◽  
Michael Girard

Glaucoma describes a group of potentially blinding ocular disorders, afflicting c. 60 million people worldwide. Of these, c. 8 million are bilaterally blind, estimated to increase to 11 million by 2020. The central event in glaucoma is slow and irreversible damage of retinal ganglion cells, responsible for carrying visual information from the retina to the brain (Figure 1). Intraocular pressure (IOP) is a risk factor for glaucoma1–4, and significant, sustained IOP reduction is unequivocally beneficial in the clinical management of glaucoma patients2, 3, 5. Unfortunately, we do not understand how elevated IOP leads to the loss of retinal ganglion cells.


2017 ◽  
Vol 114 (20) ◽  
pp. E3974-E3983 ◽  
Author(s):  
Szilard Sajgo ◽  
Miruna Georgiana Ghinia ◽  
Matthew Brooks ◽  
Friedrich Kretschmer ◽  
Katherine Chuang ◽  
...  

Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.


2021 ◽  
Vol 12 (1) ◽  
pp. 247-259
Author(s):  
Abeer Al-Dbass ◽  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Amira A. El-Anssary ◽  
Ramesa Shafi Bhat ◽  
...  

Abstract Glutamate excitotoxicity is considered one of the major causes of retinal ganglion cell death in many retinal diseases. Retinal ganglion cell degeneration causes severe blindness since visual signals from the eye to the brain are conducted only through retinal ganglion cells. Objective: We aimed to explore the potential ameliorative effects of L. sativum against glutamate excitotoxicity-induced retinal ganglion cell damage. Methods: Pure retinal ganglion cells were divided into a control group (untreated); L. sativum-treated groups in which retinal ganglion cells were treated with 5, 10, 50, or 100 µg/mL L. sativum seed extract for 2 h; glutamate-treated groups in which cells were treated with 5, 10, 50, or 100 µM glutamate for 48 h; and L. sativum/glutamate groups [pretreatment with L. sativum for 2 h (50 or 100 µg/mL) before glutamate treatment at 100 µM for 48 h]. Cell damage was assessed by comet assay and cell viability was by MTT test. Results: Tailed DNA, tail length, and tail moment of the 50 and 100 mM glutamate-treated groups were significantly greater than those of the blank control group, while the L. sativum-treated groups demonstrated nonsignificantly different tailed DNA, tail length, and tail moment compared with the blank control group, but significantly lower values compared with the glutamate-treated groups. Conclusion: L. sativum ameliorated the cell viability in retinal ganglion cells after high-concentration glutamate exposure. L. sativum seed extracts were efficient anti-excitotoxic and antioxidant agent that might improve the clinical presentation of many neurological disorders.


1997 ◽  
Vol 78 (5) ◽  
pp. 2336-2350 ◽  
Author(s):  
David K. Warland ◽  
Pamela Reinagel ◽  
Markus Meister

Warland, David K., Pamela Reinagel, and Markus Meister.Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78: 2336–2350, 1997. This work investigates how a time-dependent visual stimulus is encoded by the collective activity of many retinal ganglion cells. Multiple ganglion cell spike trains were recorded simultaneously from the isolated retina of the tiger salamander using a multielectrode array. The stimulus consisted of photopic, spatially uniform, temporally broadband flicker. From the recorded spike trains, an estimate was obtained of the stimulus intensity as a function of time. This was compared with the actual stimulus to assess the quality and quantity of visual information conveyed by the ganglion cell population. Two algorithms were used to decode the spike trains: an optimized linear filter in which each action potential made an additive contribution to the stimulus estimate and an artificial neural network trained by back-propagation to match spike trains with stimuli. The two methods performed indistinguishably, suggesting that most of the information about this stimulus can be extracted by linear operations on the spike trains. Individual ganglion cells conveyed information at a rate of 3.2 ± 1.7 bits/s (mean ± SD), with an average information content per spike of 1.6 bits. The maximal possible rate of information transmission compatible with the measured spiking statistics was 13.9 ± 6.3 bits/s. On average, ganglion cells used 22% of this capacity to encode visual information. When a decoder received two spike trains of the same response type, the reconstruction improved only marginally over that obtained from a single cell. However, a decoder using an on and an off cell extracted as much information as the sum of that obtained from each cell alone. Thus cells of opposite response type encode different and nonoverlapping features of the stimulus. As more spike trains were provided to the decoder, the total information rate rapidly saturated, with 79% of the maximal value obtained from a local cluster of just four neurons of different functional types. The decoding filter applied to a given neuron's spikes within such a multiunit decoder differed substantially from the filter applied to that same neuron in a single-unit decoder. This shows that the optimal interpretation of a ganglion cell's action potential depends strongly on the simultaneous activity of other nearby cells. The quality of the stimulus reconstruction varied greatly with frequency: flicker components below 1 Hz and above 10 Hz were reconstructed poorly, and the performance was optimal near 2.5 Hz. Further analysis suggests that temporal encoding by ganglion cell spike trains is limited by slow phototransduction in the cone photoreceptors and a corrupting noise source proximal to the cones.


2019 ◽  
Vol 20 (13) ◽  
pp. 3282 ◽  
Author(s):  
Verónica Murcia-Belmonte ◽  
Lynda Erskine

Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1181
Author(s):  
Yue Hu ◽  
Lynn Michelle Grodzki ◽  
Susanne Bartsch ◽  
Udo Bartsch

Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.


2020 ◽  
Author(s):  
Xiaohu Wei ◽  
Zhenhao Zhang ◽  
Huan-huan Zeng ◽  
Xue-Feng Wang ◽  
Wenrong Zhan ◽  
...  

SUMMARYDegeneration of retinal ganglion cells (RGCs) and their axons underlies vision loss in glaucoma and various optic neuropathies. There are currently no treatments available to restore lost vision in patients affected by these diseases. Regenerating RGCs and reconnecting the retina to the brain represent an ideal therapeutic strategy; however, mammals do not have a reservoir of retinal stem/progenitor cells poised to produce new neurons in adulthood. Here, we regenerated RGCs in adult mice by direct lineage reprogramming of retinal interneurons. We successfully converted amacrine and displaced amacrine interneurons into RGCs, and observed that regenerated RGCs projected axons into brain retinorecipient areas. They convey visual information to the brain in response to visual stimulation, and are able to transmit electrical signals to postsynaptic neurons, in both normal animals and in a diseased model. The generation of functional RGCs in adult mammals points to a therapeutic strategy for vision restoration in patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


Sign in / Sign up

Export Citation Format

Share Document