scholarly journals Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin

Author(s):  
Jing Zhang ◽  
Marina A. Bellani ◽  
Jing Huang ◽  
Ryan C. James ◽  
Durga Pokharel ◽  
...  

Replisomes follow a schedule in which replication of DNA in euchromatin is early in S phase while sequences in heterochromatin replicate late. Impediments to DNA replication, referred to as replication stress, can stall replication forks triggering activation of the ATR kinase and downstream pathways. While there is substantial literature on the local consequences of replisome stalling–double strand breaks, reversed forks, or genomic rearrangements–there is limited understanding of the determinants of replisome stalling vs. continued progression. Although many proteins are recruited to stalled replisomes, current models assume a single species of “stressed” replisome, independent of genomic location. Here we describe our approach to visualizing replication fork encounters with the potent block imposed by a DNA interstrand crosslink (ICL) and our discovery of an unexpected pathway of replication restart (traverse) past an intact ICL. Additionally, we found two biochemically distinct replisomes distinguished by activity in different stages of S phase and chromatin environment. Each contains different proteins that contribute to ICL traverse.

2004 ◽  
Vol 24 (6) ◽  
pp. 617-629 ◽  
Author(s):  
Jay C. Leonard ◽  
Ann M. Mullinger ◽  
John Schmidt ◽  
Heather J. Cordell ◽  
Robert T. Johnson

Previously we used the topoisomerase I inhibitor camptothecin (CPT), which kills mainly S-phase cells primarily by inducing double strand breaks (DSBs) in replication forks, to show that ataxia telangiectasia (A-T) fibroblasts are defective in the repair of this particular subclass of DSBs. CPT treated A-T cells reaching G2 have abnormally high levels of chromatid exchanges, viewed as prematurely condensed G2 chromosomes (G2 PCC), compared with normal cells where aberrations are mostly chromatid breaks. Here we show that A-T lymphoblastoid cells established from individuals with different mutations in the ATM gene also exhibit increased levels of chromosomal exchanges in response to CPT, indicating that the replication-associated DSBs are misrepaired in all these cells. From family studies we show that the presence of a single mutated allele in obligate A-T heterozygotes leads to intermediate levels of chromosomal exchanges in CPT-treated lymphoblastoid cells, thus providing a functional and sensitive assay to identify these individuals.


2015 ◽  
Vol 197 (14) ◽  
pp. 2374-2382 ◽  
Author(s):  
Samuel Million-Weaver ◽  
Ariana Nakta Samadpour ◽  
Houra Merrikh

ABSTRACTEfficient duplication of genomes depends on reactivation of replication forks outside the origin. Replication restart can be facilitated by recombination proteins, especially if single- or double-strand breaks form in the DNA. Each type of DNA break is processed by a distinct pathway, though both depend on the RecA protein. One common obstacle that can stall forks, potentially leading to breaks in the DNA, is transcription. Though replication stalling by transcription is prevalent, the nature of DNA breaks and the prerequisites for replication restart in response to these encounters remain unknown. Here, we used an engineered site-specific replication-transcription conflict to identify and dissect the pathways required for the resolution and restart of replication forks stalled by transcription inBacillus subtilis. We found that RecA, its loader proteins RecO and AddAB, and the Holliday junction resolvase RecU are required for efficient survival and replication restart after conflicts with transcription. Genetic analyses showed that RecO and AddAB act in parallel to facilitate RecA loading at the site of the conflict but that they can each partially compensate for the other's absence. Finally, we found that RecA and either RecO or AddAB are required for the replication restart and helicase loader protein, DnaD, to associate with the engineered conflict region. These results suggest that conflicts can lead to both single-strand gaps and double-strand breaks in the DNA and that RecA loading and Holliday junction resolution are required for replication restart at regions of replication-transcription conflicts.IMPORTANCEHead-on conflicts between replication and transcription occur when a gene is expressed from the lagging strand. These encounters stall the replisome and potentially break the DNA. We investigated the necessary mechanisms forBacillus subtiliscells to overcome a site-specific engineered conflict with transcription of a protein-coding gene. We found that the recombination proteins RecO and AddAB both load RecA onto the DNA in response to the head-on conflict. Additionally, RecA loading by one of the two pathways was required for both replication restart and efficient survival of the collision. Our findings suggest that both single-strand gaps and double-strand DNA breaks occur at head-on conflict regions and demonstrate a requirement for recombination to restart replication after collisions with transcription.


2017 ◽  
Author(s):  
Ana Teixeira-Silva ◽  
Anissia Ait Saada ◽  
Ismail Iraqui ◽  
Marina Charlotte Nocente ◽  
Karine Fréon ◽  
...  

AbstractReplication requires Homologous Recombination (HR) to stabilize and restart terminally-arrested forks. HR-mediated fork processing requires single stranded DNA (ssDNA) gaps and not necessarily Double Strand Breaks. We used genetic and molecular assays to investigate fork-resection and restart at dysfunctional, unbroken forks in Schizosaccharomyces pombe. We found that fork-resection is a two-step process coordinated by the non-homologous end joining factor Ku. An initial resection mediated by MRN/Ctp1 removes Ku from terminally-arrested forks, generating ~ 110 bp sized gaps obligatory for subsequent Exo1-mediated long-range resection and replication restart. The lack of Ku results in slower fork restart, excessive resection, and impaired RPA recruitment. We propose that terminally-arrested forks undergo fork reversal, providing a single DNA end for Ku binding which primes RPA-coated ssDNA. We uncover an unprecedented role for Ku in orchestrating resection of unbroken forks and in fine-tuning HR-mediated replication restart.Ku orchestrates a two-steps DNA end-resection of terminally-arrested and unbroken forksMRN/Ctp1 removes Ku from terminally-arrested forks to initiate fork-resectiona ~110 bp sized ssDNA gap is sufficient and necessary to promote fork restart.The lack of Ku decreases ssDNA RPA-coating, and slows down replication fork restart.


2007 ◽  
Vol 189 (9) ◽  
pp. 3496-3501 ◽  
Author(s):  
Estrella Guarino ◽  
Alfonso Jiménez-Sánchez ◽  
Elena C. Guzmán

ABSTRACT The observed lengthening of the C period in the presence of a defective ribonucleoside diphosphate reductase has been assumed to be due solely to the low deoxyribonucleotide supply in the nrdA101 mutant strain. We show here that the nrdA101 mutation induces DNA double-strand breaks at the permissive temperature in a recB-deficient background, suggesting an increase in the number of stalled replication forks that could account for the slowing of replication fork progression observed in the nrdA101 strain in a Rec+ context. These DNA double-strand breaks require the presence of the Holliday junction resolvase RuvABC, indicating that they have been generated from stalled replication forks that were processed by the specific reaction named “replication fork reversal.” Viability results supported the occurrence of this process, as specific lethality was observed in the nrdA101 recB double mutant and was suppressed by the additional inactivation of ruvABC. None of these effects seem to be due to the limitation of the deoxyribonucleotide supply in the nrdA101 strain even at the permissive temperature, as we found the same level of DNA double-strand breaks in the nrdA + strain growing under limited (2-μg/ml) or under optimal (5-μg/ml) thymidine concentrations. We propose that the presence of an altered NDP reductase, as a component of the replication machinery, impairs the progression of the replication fork, contributing to the lengthening of the C period in the nrdA101 mutant at the permissive temperature.


2020 ◽  
Vol 48 (22) ◽  
pp. 12697-12710
Author(s):  
Elizabeth A Stivison ◽  
Kati J Young ◽  
Lorraine S Symington

Abstract Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4056-4066
Author(s):  
S A Greenfeder ◽  
C S Newlon

The 120 bp of yeast centromeric DNA is tightly complexed with protein to form a nuclease-resistant core structure 200 to 240 bp in size. We have used two-dimensional agarose gel electrophoresis to analyze the replication of the chromosomal copies of yeast CEN1, CEN3, and CEN4 and determine the fate of replication forks that encounter the protein-DNA complex at the centromere. We have shown that replication fork pause sites are coincident with each of these centromeres and therefore probably with all yeast centromeres. We have analyzed the replication of plasmids containing mutant derivatives of CEN3 to determine whether the replication fork pause site is a result of an unusual structure adopted by centromere DNA or a result of the protein-DNA complex formed at the centromere. The mutant centromere derivatives varied in function as well as the ability to form the nuclease-resistant core structure. The data obtained from analysis of these derivatives indicate that the ability to cause replication forks to pause correlates with the ability to form the nuclease-resistant core structure and not with the presence or absence of a particular DNA sequence. Our findings further suggest that the centromere protein-DNA complex is present during S phase when replication forks encounter the centromere and therefore may be present throughout the cell cycle.


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


Author(s):  
Madalena Tarsounas ◽  
Adelina A. Davies ◽  
Stephen C. West

The efficient repair of double–strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA–damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level.


2009 ◽  
Vol 187 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Kevin D. Smith ◽  
Michael A. Fu ◽  
Eric J. Brown

The Tim (Timeless)–Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim–Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR–Chk1 pathway engagement. We now demonstrate that Tim–Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR–Chk1 pathway in Tim–Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim–Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim–Tipin dysfunction. Together, these experiments indicate that the Tim–Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR–Chk1 function and by facilitating phosphorylation of Chk1 by ATR.


Sign in / Sign up

Export Citation Format

Share Document