scholarly journals Magnetic Silica Nanosystems With NIR-Responsive and Redox Reaction Capacity for Drug Delivery and Tumor Therapy

2020 ◽  
Vol 8 ◽  
Author(s):  
Chengzheng Jia ◽  
Hang Wu ◽  
Keyi Luo ◽  
Weiju Hao ◽  
Shige Wang ◽  
...  
2016 ◽  
Vol 22 (19) ◽  
pp. 2808-2820 ◽  
Author(s):  
Houman Alimoradi ◽  
Siddharth S. Matikonda ◽  
Allan B. Gamble ◽  
Gregory I. Giles ◽  
Khaled Greish

2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Hailiang Chen ◽  
...  

The targeted multi-responsive drug delivery systems with MRI capacity were anticipated as a promising strategy for tumor therapy and diagnosis. Herein, we successfully synthesized anisamide-modified and non-modified UV/GSH-responsive molecules (10,10-NB-S-S-P-AA...


2004 ◽  
Vol 22 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Christopher Guerin ◽  
Alessandro Olivi ◽  
Jon D. Weingart ◽  
H. Christopher Lawson ◽  
Henry Brem

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1885
Author(s):  
Julian S. Rechberger ◽  
Frederic Thiele ◽  
David J. Daniels

Intra-arterial drug delivery circumvents the first-pass effect and is believed to increase both efficacy and tolerability of primary and metastatic brain tumor therapy. The aim of this update is to report on pertinent articles and clinical trials to better understand the research landscape to date and future directions. Elsevier’s Scopus and ClinicalTrials.gov databases were reviewed in August 2021 for all possible articles and clinical trials of intra-arterial drug injection as a treatment strategy for brain tumors. Entries were screened against predefined selection criteria and various parameters were summarized. Twenty clinical trials and 271 articles satisfied all inclusion criteria. In terms of articles, 201 (74%) were primarily clinical and 70 (26%) were basic science, published in a total of 120 different journals. Median values were: publication year, 1986 (range, 1962–2021); citation count, 15 (range, 0–607); number of authors, 5 (range, 1–18). Pertaining to clinical trials, 9 (45%) were phase 1 trials, with median expected start and completion years in 2011 (range, 1998–2019) and 2022 (range, 2008–2025), respectively. Only one (5%) trial has reported results to date. Glioma was the most common tumor indication reported in both articles (68%) and trials (75%). There were 215 (79%) articles investigating chemotherapy, while 13 (65%) trials evaluated targeted therapy. Transient blood–brain barrier disruption was the commonest strategy for articles (27%) and trials (60%) to optimize intra-arterial therapy. Articles and trials predominately originated in the United States (50% and 90%, respectively). In this bibliometric and clinical trials analysis, we discuss the current state and trends of intra-arterial therapy for brain tumors. Most articles were clinical, and traditional anti-cancer agents and drug delivery strategies were commonly studied. This was reflected in clinical trials, of which only a single study had reported outcomes. We anticipate future efforts to involve novel therapeutic and procedural strategies based on recent advances in the field.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yeeun Lee ◽  
Donghyun Lee ◽  
Eunyoung Park ◽  
Seok-young Jang ◽  
Seo Young Cheon ◽  
...  

Abstract Background Combination therapy using more than one drug can result in a synergetic effect in clinical treatment of cancer. For this, it is important to develop an efficient drug delivery system that can contain multiple drugs and provide high accumulation in tumor tissue. In particular, simultaneous and stable loading of drugs with different chemical properties into a single nanoparticle carrier is a difficult problem. Results We developed rhamnolipid-coated double emulsion nanoparticles containing doxorubicin and erlotinib (RL-NP-DOX-ERL) for efficient drug delivery to tumor tissue and combination chemotherapy. The double emulsion method enabled simultaneous loading of hydrophilic DOX and hydrophobic ERL in the NPs, and biosurfactant RL provided stable surface coating. The resulting NPs showed fast cellular uptake and synergetic tumor cell killing in SCC7 cells. In real-time imaging, they showed high accumulation in SCC7 tumor tissue in mice after intravenous injection. Furthermore, enhanced tumor suppression was observed by RL-NP-DOX-ERL in the same mouse model compared to control groups using free drugs and NPs containing a single drug. Conclusions The developed RL-NP-DOX-ERL provided efficient delivery of DOX and ERL to tumor tissue and successful tumor therapy with a synergetic effect. Importantly, this study demonstrated the promising potential of double-emulsion NPs and RL coating for combination therapy. Graphical Abstract


Nanoscale ◽  
2020 ◽  
Vol 12 (25) ◽  
pp. 13513-13522
Author(s):  
Zhichu Xiang ◽  
Gexuan Jiang ◽  
Di Fan ◽  
Jiesheng Tian ◽  
Zhiyuan Hu ◽  
...  

Tumor-targeted drug carriers are becoming attractive for precise drug delivery in anti-tumor therapy.


Sign in / Sign up

Export Citation Format

Share Document