scholarly journals Efficient Colorimetric Fluoride Anion Sensor Based on π-Conjugated Carbazole Small Molecule

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhifeng Deng ◽  
Cheng Wang ◽  
Junqiang Li ◽  
Meng Zheng

The ability to detect fluoride anions with high selectivity and sensitivity by using the naked eye is crucial yet challenging. In this study, a novel, simple conjugated organic dye, N-tert-butyldimethylsilyl-3,6-diiodocarbazole (CA-TBMDS) was developed and used for the first time as a colorimetric sensor for fluoride. CA-TBMDS was found to be a highly sensitive fluoride chemosensor, with a detection limit as low as 3 × 10−5 M. The reaction of CA-TBMDS with fluoride anions in a tetrahydrofuran solution resulted in a color change from colorless to yellow under ambient light, which can be discriminated by the naked eye. The sensor operated via intermolecular proton transfer between the amide units and the fluoride anion, as confirmed by proton nuclear magnetic resonance titration. CA-TBMDS is not only highly sensitive to fluoride anions, but also exhibits high sensitivity in the presence of various ions. This work demonstrates that N-butyldimethylchlorosilane-based organic dyes have prospective utility as a type of fluoride anion chemosensor.

2017 ◽  
Vol 196 ◽  
pp. 101-111 ◽  
Author(s):  
Lingwei Kong ◽  
Yahui Zhang ◽  
Huiling Mao ◽  
Xiaoling Pan ◽  
Yong Tian ◽  
...  

A novel multi-mode probe consisting of a hexaphenyl-1,3-butadiene derivative, 2,2′-((((1Z,3Z)-1,2,3,4-tetraphenylbuta-1,3-diene-1,4-diyl)bis(4,1-phenylene))bis(methanylylidene))dimalononitrile (ZZ–HPB–CN), with typical aggregation-enhanced emission (AEE) features was easily prepared for the highly sensitive and rapid detection of amine vapors. The ZZ–HPB–CN sensor, which was prepared by simply depositing ZZ–HPB–CN on filter paper, could detect low concentration vapors of volatile amines using fluorescence, ultraviolet and naked-eye detection. The limit of detection of the sensor was as low as 1 ppb for the fluorescence detection. The color change of the sensor caused by 1–10 ppm amine vapors could be observed under UV light or with the naked eye. The high sensitivity, quick response and easy operation of the probe give it great potential for real-life applications.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 95 ◽  
Author(s):  
Shuangjiao Xu ◽  
Kehai Zhou ◽  
Dan Fang ◽  
Lei Ma

In this paper, fluorescent copper nanoclusters (NCs) are used as a novel probe for the sensitive detection of gossypol for the first time. Based on a fluorescence quenching mechanism induced by interactions between bovine serum albumin (BSA) and gossypol, fluorescent BSA-Cu NCs were seen to exhibit a high sensitivity to gossypol in the range of 0.1–100 µM. The detection limit for gossypol is 25 nM at a signal-to-noise ratio of three, which is approximately 35 times lower than the acceptable limit (0.9 µM) defined by the US Food and Drug Administration for cottonseed products. Moreover, the proposed method for gossypol displays excellent selectivity over many common interfering species. We also demonstrate the application of the present method to the measurement of several real samples with satisfactory recoveries, and the results agree well with those obtained using the high-performance liquid chromatography (HPLC) method. The method based on Cu NCs offers the followings advantages: simplicity of design, facile preparation of nanomaterials, and low experimental cost.


The Analyst ◽  
2018 ◽  
Vol 143 (18) ◽  
pp. 4354-4358 ◽  
Author(s):  
Hai Xu ◽  
Zhen Huang ◽  
Yaqian Li ◽  
Biao Gu ◽  
Zile Zhou ◽  
...  

The ‘C–CN’ bond cleavage was applied to the recognition of N2H4 for the first time; the obvious change in color could be used for “naked-eye” detection; the corresponding detection limit was found to be 5.81 × 10−8 M (1.65 ppb); the probe could be applied for N2H4 detection in real water samples.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhifeng Deng ◽  
Cheng Wang ◽  
Haichang Zhang ◽  
Taotao Ai ◽  
Kaichang Kou

In recent years, the wide application of fluoride materials has grown rapidly, therefore excessive discharge in the surrounding environment, especially in drinking water and organic effluent, has become a potential hazard to humans, and has even resulted in fluorosis disease. The development of a highly effective and convenient method to recognize fluoride anions in surrounding environments seems necessary and urgent. Among which, the development of a colorimetric and fluorescence fluoride chemosensor with obvious color changing allowing for naked-eye detection with high sensitivity and selectivity is more interesting and challenging. In this minireview, current novel colorimetric and fluorescence chemosensors for fluoride anions by hydrogen-bond interaction are introduced, including obvious color changing by naked-eye detection, high sensitivity and selectivity, non-pollution and fluoride extraction ability, aqueous detection, and other additional functions. Finally, the perspective of the fluoride chemosensor design concept and potential evolution trends are pointed out.


RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28194-28199 ◽  
Author(s):  
Arghyadeep Bhattacharyya ◽  
Soumen Ghosh ◽  
Nikhil Guchhait

Synthesis of (E)-bis-N'-((1H-pyrrol-2-yl)-methylene)-pyridine-2,6-carbohydrazide and its sensing ability towards copper(ii) ion in aqueous medium by color change, the sensing limit being 4.0 × 10−9 M.


Author(s):  
Zhong-Zheng Ding ◽  
Guang-Song Zheng ◽  
Qing Lou ◽  
Jiang-Fan Han ◽  
Meng-Yuan Wu ◽  
...  

Abstract Excellent luminescent materials are essential for high-performance fluorescent nanosensors. Here, a new-type self-calibrated humidity sensor has been established through monitoring the fluorescent color change of carbon dots (CDs) confined in sodium hydroxide (CDs@NaOH). The CDs are prepared by a facile and rapid microwave assisted heating method using citric acid, urea, and NaOH as precursors. The confinement effect from NaOH has reduced the nonradiative transition and suppressed the aggregation-induced quenching of the CDs in solid. Compared with other sensors based on CD fluorescent visualization, the sensor has good linearity and wide humidity detection range from 6.9% to 95.4%. With the increased relative humidity, the fluorescence color of the sensor change from green to blue. The proposed sensing mechanism is due to the breaking and reforming of hydrogen bonds and proton transfer occurring at the CD-NaOH matrix interfaces. This finding suggests a potential role for the spatial confinement effect and may provide an avenue for developing highly sensitive humidity readouts.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1259 ◽  
Author(s):  
Bo-Yu Chen ◽  
Yen-Chen Lung ◽  
Chi-Ching Kuo ◽  
Fang-Cheng Liang ◽  
Tien-Liang Tsai ◽  
...  

Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg2+), and temperature were prepared from poly(N-Isopropylacrylamide-co-N-methylolacrylamide-co-rhodamine derivative) (poly(NIPAAm-co-NMA-co-RhBN2AM)) by employing an electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg2+ in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg2+. The synthesis of poly(NIPAAm-co-NMA-co-RhBN2AM) with different compositions was carried on via free-radical polymerization. ES nanofibers prepared from sensory copolymers with a 71.1:28.4:0.5 NIPAAm:NMA:RhBN2AM ratio (P3 ES nanofibers) exhibited significant color change from non-fluorescent to red fluorescence while sensing pH (the λPL, max exhibited a 4.8-fold enhancement) or Hg2+ (at a constant Hg2+ concentration (10−3 M), the λPL, max of P3-fibers exhibited 4.7-fold enhancement), and high reversibility of on/off switchable fluorescence emission at least five times when Hg2+ and ethylenediaminetetraacetic acid (EDTA) were sequentially added. The P3 ES nanofibrous membranes had a higher surface-to-volume ratio to enhance their performance than did the corresponding thin films. In addition, the fluorescence emission of P3 ES nanofibrous membranes exhibited second enhancement above the lower critical solution temperature. Thus, the ES nanofibrous membranes prepared from P3 with on/off switchable capacity and thermo-responsive characteristics can be used as a multifunctional sensory device for specific heavy transition metal (HTM) in aqueous solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ping Sun ◽  
Xiwei Zhang ◽  
Xianxiang Wang

Trans-Zeatin is the major active phytohormone in immature corn kernels. Herein, a highly sensitive, good selective and simple aptamer-based colorimetric method for the detection of trans-zeatin was constructed. The selected aptamer sequence binds with trans-zeatin and induces a duplex-to-aptamer structure switching. The gold nanoparticles (AuNPs) solution is stable with high-concentration salt, which is protected by red complementary DNA. In the absence of trans-zeatin, the color of AuNPs changed from red to blue because aptamer DNA and complementary DNA form double-stranded DNA. Thus, the ratio of absorbance intensities (A522/A650) of AuNPs is changed with the concentration of trans-zeatin. The color change could be observed by the naked eye. The linear range of this method covers a large variation of trans-zeatin concentration from 0.05 to 0.75 μM. The detection limit is 0.037 μM. Moreover, this method was applied successfully to detect trans-zeatin in real plant samples.


2019 ◽  
Vol 11 (29) ◽  
pp. 3706-3713 ◽  
Author(s):  
Mohammed Awad Abedalwafa ◽  
Yan Li ◽  
Chunfang Ni ◽  
Gang Yang ◽  
Lu Wang

Non-enzymatic colorimetric sensor strip for detection of metronidazole (MTZ) was designed and constructed, with high sensitivity and selectivity. Which can be used for naked-eye detection of MTZ with a visible color change from pink to purple.


2020 ◽  
Vol 26 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Azeem Haider ◽  
Mukhtiar Ahmed ◽  
Muhammad Faisal ◽  
Muhammad Moazzam Naseer

AbstractHerein, we report the fluoride anion sensing properties of a commercially available and inexpensive organic compound, isatin, which is found to be a highly selective and sensitive sensor. In naked-eye experiments, by addition of fluoride anions, isatin shows a dramatic color change from pale yellow to violet at room temperature, while the addition of other anions, i.e. $\mathrm{Cl}^-,$$\mathrm{Br}^-,\mathrm I^-,\mathrm{ClO}_4^-,{\mathrm H}_2\mathrm{PO}_4^-\,\mathrm{and}\,\mathrm{PF}_6^-,$did not induce any colour change. Additionally, recognition and titration studies have also been done through UV/Vis spectroscopy. Isatin displayed a new absorption band at 533 nm after the addition of fluoride anions, which is presumably due to acid-base interaction between isatin and fluoride anions, while other anions did not trigger noticeable spectral changes. The detection limit was observed to be 0.367 ppm. DFT calculations were also performed to further explain the behavior of receptor 1 towards the Fˉ anion. Owing to high sensitivity and selectivity, isatin can be useful in the detection of biologically or environmentally important fluoride anions at very low concentration.


Sign in / Sign up

Export Citation Format

Share Document