scholarly journals The role of innate immune signals in immunity to Brucella abortus

Author(s):  
Marco Túlio R. Gomes ◽  
Priscila C. Campos ◽  
Leonardo A. de Almeida ◽  
Fernanda S. Oliveira ◽  
Miriam Maria S. Costa ◽  
...  
2016 ◽  
Vol 8 (5) ◽  
pp. 517-528 ◽  
Author(s):  
Andrew E. Armitage ◽  
Pei Jin Lim ◽  
Joe N. Frost ◽  
Sant-Rayn Pasricha ◽  
Elizabeth J. Soilleux ◽  
...  

Withdrawal of iron from serum (hypoferraemia) is a conserved innate immune antimicrobial strategy that can withhold this critical nutrient from invading pathogens, impairing their growth. Hepcidin (Hamp1) is the master regulator of iron and its expression is induced by inflammation. Mice lacking Hamp1 from birth rapidly accumulate iron and are susceptible to infection by blood-dwelling siderophilic bacteria such as Vibrio vulnificus. In order to study the innate immune role of hepcidin against a background of normal iron status, we developed a transgenic mouse model of tamoxifen-sensitive conditional Hamp1 deletion (termed iHamp1-KO mice). These mice attain adulthood with an iron status indistinguishable from littermate controls. Hamp1 disruption and the consequent decline of serum hepcidin concentrations occurred within hours of a single tamoxifen dose. We found that the TLR ligands LPS and Pam3CSK4 and heat-killed Brucella abortus caused an equivalent induction of inflammation in control and iHamp1-KO mice. Pam3CSK4 and B. abortus only caused a drop in serum iron in control mice, while hypoferraemia due to LPS was evident but substantially blunted in iHamp1-KO mice. Our results characterise a powerful new model of rapidly inducible hepcidin disruption, and demonstrate the critical contribution of hepcidin to the hypoferraemia of inflammation.


2012 ◽  
Vol 148 (1-2) ◽  
pp. 129-135 ◽  
Author(s):  
Sérgio C. Oliveira ◽  
Leonardo A. de Almeida ◽  
Natalia B. Carvalho ◽  
Fernanda S. Oliveira ◽  
Thaís L.S. Lacerda

2018 ◽  
Vol 86 (10) ◽  
Author(s):  
Gabriela González-Espinoza ◽  
Elías Barquero-Calvo ◽  
Esteban Lizano-González ◽  
Alejandro Alfaro-Alarcón ◽  
Berny Arias-Gómez ◽  
...  

ABSTRACT Brucellosis is a bacterial disease of animals and humans. Brucella abortus barely activates the innate immune system at the onset of infection, and this bacterium is resistant to the microbicidal action of complement. Since complement stands as the first line of defense during bacterial invasions, we explored the role of complement in B. abortus infections. Brucella abortus-infected mice depleted of complement with cobra venom factor (CVF) showed the same survival rate as mice in the control group. The complement-depleted mice readily eliminated B. abortus from the spleen and did so more efficiently than the infected controls after 7 days of infection. The levels of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 (IL-6) remained within background levels in complement-depleted B. abortus-infected mice. In contrast, the levels of the immune activator cytokine gamma interferon and the regulatory cytokine IL-10 were significantly increased. No significant histopathological changes in the liver and spleen were observed between the complement-depleted B. abortus-infected mice and the corresponding controls. The action exerted by Brucella on the immune system in the absence of complement may correspond to a broader phenomenon that involves several components of innate immunity.


2008 ◽  
Vol 10 (9) ◽  
pp. 1005-1009 ◽  
Author(s):  
Sergio Costa Oliveira ◽  
Fernanda Souza de Oliveira ◽  
Gilson Costa Macedo ◽  
Leonardo Augusto de Almeida ◽  
Natalia Barbosa Carvalho

Author(s):  
Yuya Takakubo ◽  
G. Barreto ◽  
Yrjo T. Konttinen ◽  
H. Oki ◽  
Michiaki Takagi

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


Sign in / Sign up

Export Citation Format

Share Document