scholarly journals Genomic Epidemiology of Antimalarial Drug Resistance in Plasmodium falciparum in Southern China

Author(s):  
Fang Huang ◽  
Christopher G. Jacob ◽  
Shannon Takala-Harrison ◽  
Matthew Adams ◽  
Heng-Lin Yang ◽  
...  

Emerging artemisinin resistance in Southeast Asia poses a significant risk to malaria control and eradication goals, including China’s plan to eliminate malaria nationwide by 2020. Plasmodium falciparum was endemic in China, especially in Southern China. Parasites from this region have shown decreased susceptibility to artemisinin and delayed parasite clearance after artemisinin treatment. Understanding the genetic basis of artemisinin resistance and identifying specific genetic loci associated with this phenotype is crucial for surveillance and containment of resistance. In this study, parasites were collected from clinical patients from Yunnan province and Hainan island. The parasites were genotyped using a P. falciparum-specific single nucleotide polymorphism (SNP) microarray. The SNP profiles examined included a total of 27 validated and candidate molecular markers of drug resistance. The structure of the parasite population was evaluated by principal component analysis by using the EIGENSOFT program, and ADMIXTURE was used to calculate maximum likelihood estimates for the substructure analysis. Parasites showed a high prevalence of resistance haplotypes of pfdhfr and pfdhps and moderate prevalence of pfcrt. There was no mutation identified on pfmdr1. Candidate SNPs on chromosomes 10, 13, and 14 that were associated with delayed parasite clearance showed a low prevalence of mutants. Parasites from Southern China were clustered and separated from those from Southeast Asia. Parasites from Yunnan province were substructured from parasites from Hainan island. This study provides evidence for a genomic population with drug resistance in Southern China and also illustrates the utility of SNP microarrays for large-scale parasite molecular epidemiology.

2013 ◽  
Vol 58 (1) ◽  
pp. 237-246 ◽  
Author(s):  
Yilong Zhang ◽  
He Yan ◽  
Guiying Wei ◽  
Shitong Han ◽  
Yufu Huang ◽  
...  

ABSTRACTSoutheast Asia (the Thailand-Cambodia border) has been considered the primal epicenter for most antimalarial drug resistance; however, numerous molecular epidemiological studies have successively reported multiple independent origins of sulfadoxine-pyrimethamine (SP) resistance-associatedPlasmodium falciparumdhfr(pfdhfr) andpfdhpsalleles in other areas. To better understand the origin and evolutionary pathway of the SP resistance in Southeast Asia, a total of 374P. falciparumfield isolates from the Yunnan-Burma border and Hainan Island in southern China have been collected for comprehensive investigations on the mutation patterns of thepfdhfr/pfdhpsgenes as well as their microsatellite haplotypes. By comparative analysis of single-nucleotide polymorphism (SNP) genotyping and flanking microsatellite haplotypes, we reveal a unique origin of pyrimethamine-resistant mutations inPfdhfrgene in Hainan Island and an oriented spread route of the pyrimethamine resistance from the Thailand-Cambodia border into the Hainan area, which reflects the geographical traits and SP administration histories in the two geographically independent areas. Moreover, genetic linkages between the high-level SP resistance-conferringpfdhfr/pfdhpsalleles have been established in the isolates from the Yunnan-Burma border, raising the concern of a genetic basis in adopting combination chemotherapies against falciparum malaria.


2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites has led to increasing rates of treatment failure with first-line ART-based combination therapies (ACTs) in Southeast Asia. In this region, select mutations in K13 can result in delayed parasite clearance rates in vivo and enhanced survival in the ring-stage survival assay (RSA) in vitro. Our genotyping of 3,299 P. falciparum isolates across 11 sub-Saharan countries reveals the continuing dominance of wild-type K13 and confirms the emergence of a K13 R561H variant in Rwanda. Using gene editing, we provide definitive evidence that this mutation, along with M579I and C580Y, can confer variable degrees of in vitro ART resistance in African P. falciparum strains. C580Y and M579I were both associated with substantial fitness costs in African parasites, which may counter-select against their dissemination in high-transmission settings. We also report the impact of multiple K13 mutations, including the predominant variant C580Y, on RSA survival rates and fitness in multiple Southeast Asian strains. No change in ART susceptibility was observed upon editing point mutations in ferrodoxin or mdr2, earlier associated with ART resistance in Southeast Asia. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Melissa D. Conrad ◽  
Sam L. Nsobya ◽  
Philip J. Rosenthal

ABSTRACT Artemisinin-based combination therapies (ACTs) are the standard of care to treat uncomplicated falciparum malaria. However, resistance to artemisinins, defined as delayed parasite clearance after therapy, has emerged in Southeast Asia, and the spread of resistance to sub-Saharan Africa could have devastating consequences. Artemisinin resistance has been associated in Southeast Asia with multiple nonsynonymous single nucleotide polymorphisms (NS-SNPs) in the propeller domain of the gene encoding the Plasmodium falciparum K13 protein (K13PD). Some K13PD NS-SNPs have been seen in Africa, but the relevance of these mutations is unclear. To assess whether ACT use has selected for specific K13PD mutations, we compared the K13PD genetic diversity in clinical isolates collected before and after the implementation of ACT use from seven sites across Uganda. We detected K13PD NS-SNPs in 16 of 683 (2.3%) clinical isolates collected between 1999 and 2004 and in 26 of 716 (3.6%) isolates collected between 2012 and 2016 (P = 0.16), representing a total of 29 different polymorphisms at 27 codons. Individual NS-SNPs were usually detected only once, and none were found in more than 0.7% of the isolates. Three SNPs (C469F, P574L, and A675V) associated with delayed clearance in Southeast Asia were seen in samples collected between 2012 and 2016, each in a single isolate. No differences in diversity following implementation of ACT use were found at any of the seven sites, nor was there evidence of selective pressures acting on the locus. Our results suggest that selection by ACTs is not impacting on K13PD diversity in Uganda.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Luana C Mathieu ◽  
Horace Cox ◽  
Angela M Early ◽  
Sachel Mok ◽  
Yassamine Lazrek ◽  
...  

Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016–2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Matilde Riloha Rivas ◽  
Marian Warsame ◽  
Ramona Mbá Andeme ◽  
Salomón Nsue Esidang ◽  
Policarpo Ricardo Ncogo ◽  
...  

Abstract Background Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Equatorial Guinea. This study was designed to evaluate the efficacy of these artemisinin-based combinations and detect mutations in P. falciparum kelch13-propeller domain gene (Pfkelch13). Methods A single-arm prospective study evaluating the efficacy of ASAQ and AL at three sites: Malabo, Bata and Ebebiyin was conducted between August 2017 and July 2018. Febrile children aged six months to 10 years with confirmed uncomplicated P. falciparum infection and other inclusion criteria were sequentially enrolled first in ASAQ and then in AL at each site, and followed up for 28 days. Clinical and parasitological parameters were assessed. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples on day-0 were analysed for mutations in Pfkelch13 gene. Results A total 264 and 226 patients were enrolled in the ASAQ and AL treatment groups, respectively. Based on per-protocol analysis, PCR-adjusted cure rates of 98.6% to 100% and 92.4% to 100% were observed in patients treated with ASAQ and AL, respectively. All study children in both treatment groups were free of parasitaemia by day-3. Of the 476 samples with interpretable results, only three samples carried non-synonymous Pfkelch13 mutations (E433D and A578S), and none of them is the known markers associated with artemisinin resistance. Conclusion The study confirmed high efficacy of ASAQ and AL for the treatment of uncomplicated falciparum infections as well as the absence of delayed parasite clearance and Pfkelch13 mutations associated with artemisinin resistance. Continued monitoring of the efficacy of these artemisinin-based combinations, at least every two years, along with molecular markers associated with artemisinin and partner drug resistance is imperative to inform national malaria treatment policy and detect resistant parasites early. Trial registration ACTRN12617000456358, Registered 28 March 2017; http://www.anzctr.org.au/trial/MyTrial.aspx


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Theerayot Kobasa ◽  
Eldin Talundzic ◽  
Rungniran Sug-aram ◽  
Patcharida Boondat ◽  
Ira F. Goldman ◽  
...  

ABSTRACT Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparum kelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


Author(s):  
Lucie Paloque ◽  
Romain Coppée ◽  
Barbara H. Stokes ◽  
Nina F. Gnädig ◽  
Karamoko Niaré ◽  
...  

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 ( pfk13 ) gene. Here, we carried out in vitro selection over a one-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA 0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Author(s):  
Eduard Rovira-Vallbona ◽  
Nguyen Van Hong ◽  
Johanna H Kattenberg ◽  
Ro Mah Huan ◽  
Nguyen Thi Thu Hien ◽  
...  

Abstract Background Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. Objectives To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). Methods Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. Results Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT–qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. Conclusions Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.


2017 ◽  
Vol 114 (13) ◽  
pp. 3515-3520 ◽  
Author(s):  
Ricardo Ataide ◽  
Elizabeth A. Ashley ◽  
Rosanna Powell ◽  
Jo-Anne Chan ◽  
Michael J. Malloy ◽  
...  

Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2.P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = −0.90 (95% confidence interval, −0.97, −0.65), and Spearman ρ = −0.94 (95% confidence interval, −0.98, −0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, −0.16 to −0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, −0.22 to −0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites.


2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)


Sign in / Sign up

Export Citation Format

Share Document