scholarly journals Building an Improved Drought Climatology Using Updated Drought Tools: A New Mexico Food-Energy-Water (FEW) Systems Focus

2020 ◽  
Vol 2 ◽  
Author(s):  
Lindsay E. Johnson ◽  
Hatim M. E. Geli ◽  
Michael J. Hayes ◽  
Kelly Helm Smith

Drought is a familiar climatic phenomenon in the United States Southwest, with complex human-environment interactions that extend beyond just the physical drought events. Due to continued climate variability and change, droughts are expected to become more frequent and/or severe in the future. Decision-makers are charged with mitigating and adapting to these more extreme conditions and to do that they need to understand the specific impacts drought has on regional and local scales, and how these impacts compare to historical conditions. Tremendous progress in drought monitoring strategies has occurred over the past several decades, with more tools providing greater spatial and temporal resolutions for a variety of variables, including drought impacts. Many of these updated tools can be used to develop improved drought climatologies for decision-makers to use in their drought risk management actions. In support of a Food-Energy-Water (FEW) systems study for New Mexico, this article explores the use of updated drought monitoring tools to analyze data and develop a more holistic drought climatology applicable for New Mexico. Based upon the drought climatology, droughts appear to be occurring with greater frequency and magnitude over the last two decades. This improved drought climatology information, using New Mexico as the example, increases the understanding of the effects of drought on the FEW systems, allowing for better management of current and future drought events and associated impacts.

Author(s):  
T. Tadesse ◽  
D. A. Wilhite

Drought is a natural disaster that influences many aspects of society. Since the demand for water is increasing along with the population in many parts of the world, water supply interruptions caused by drought can be expected to produce greater impacts. This is because the impacts of drought are determined not only by the frequency and intensity of meteorological drought but also by the number of people at risk and their degree of risk (Wilhite, 2000). For example, the increase in population in Africa and Asia increases drought vulnerability significantly. Thus, policies that promote the development and implementation of appropriate drought mitigation measures today will help to reduce the economic, social, and environmental impacts associated with future droughts and the need for government intervention. To monitor drought, different types of indicators (e.g., drought indices) have been used in many parts of the world. Because there is no single definition for drought, determining which indicators to use poses more difficulties for planners. Decision makers use different policies and strategies based on the historical records of their countries. For example, in Australia, when meteorological drought (annual rainfalls in the lowest 10% of recorded values) occurred over at least 10% of the continent, it coincided with damaging agricultural droughts resulting significant losses of crops and livestock (Heathcote, 2000). Because of the varied and potentially catastrophic losses resulting from drought in many parts of the world, both governmental and non-governmental decision makers need better predictive and monitoring tools to assist them in dealing more effectively with drought. Better early warning and prediction is the foundation of a new drought management paradigm based on risk management. In South Africa, the Weather Bureau issues extended outlooks for short and long periods using numerical modeling and statistical methods (Vogel, Lang, & Monnik, 2000). In United States, recent advances in science and technology are enhancing drought monitoring capabilities and the availability of such information, which allows decision makers to make more knowledge-based decisions to lessen the impacts of drought. In this article, we highlight the role of government in drought planning and mitigation, the potential of data mining techniques and their outputs (e.g., maps and tables) for improving informed decision making, and also present a newly developed drought monitoring tool, the Vegetation Drought Response Index (VegDRI) as an example over the central United States.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rizwan Niaz ◽  
Mohammed M. A. Almazah ◽  
Xiang Zhang ◽  
Ijaz Hussain ◽  
Muhammad Faisal

Drought frequently spreads across large spatial and time scales and is more complicated than other natural disasters that can damage economic and other natural resources worldwide. However, improved drought monitoring and forecasting techniques can help to minimize the vulnerability of society to drought and its consequent influences. This emphasizes the need for improved drought monitoring tools and assessment techniques that provide information more precisely about drought occurrences. Therefore, this study developed a new method, Model-Based Clustering for Spatio-Temporal Categorical Sequences (MBCSTCS), that uses state selection procedures through finite mixture modeling and model-based clustering. The MBCSTCS uses the functional structure of first-order Markov model components for modeling each data group. In MBCSTCS, the suitable order K of the components is selected by Bayesian information criterion (BIC). In MBCSTCS, the estimated mixing proportions and the posterior probabilities are used to compute probability distribution associated with the future steps of transitions. Furthermore, MBCSTCS predicts drought occurrences in future time using spatiotemporal categorical sequences of various drought classes. The MBCSTCS is applied to the six meteorological stations in the northern area of Pakistan. Moreover, it is found that MBCSTCS provides expeditious information for the long-term spatiotemporal categorical sequences. These findings may be helpful to make plans for early warning systems, water resource management, and drought mitigation policies to decrease the severe effects of drought.


Author(s):  
Tsegaye Tadesse ◽  
Brian Wardlow ◽  
Michael J. Hayes

This chapter discusses the application of data mining to develop drought monitoring tools that enable monitoring and prediction of drought’s impact on vegetation conditions. These monitoring tools help decision makers to assess the current levels of drought-related vegetation stress and provide insight into the possible future trends in vegetation conditions at local and regional scales, which can be used to make knowledge-based decisions. The chapter summarizes current research using data mining approaches (e.g., association rules and decision-tree methods) to develop these types of drought monitoring tools and briefly explains how they are being integrated with decision support systems. Future direction in data mining techniques and drought research is also discussed. This chapter is intended to introduce how data mining is be used to enhance drought monitoring and prediction in the United States and assist others to understand how similar tools might be developed in other parts of the world.


Crisis ◽  
1999 ◽  
Vol 20 (3) ◽  
pp. 121-126 ◽  
Author(s):  
Lenora Olson ◽  
Frank Huyler ◽  
Arthur W Lynch ◽  
Lynne Fullerton ◽  
Deborah Werenko ◽  
...  

Suicide is among the leading causes of death in the United States, and in women the second leading cause of injury death overall. Previous studies have suggested links between intimate partner violence and suicide in women. We examined female suicide deaths to identify and describe associated risk factors. We reviewed all reports from the New Mexico Office of the Medical Investigator for female suicide deaths occurring in New Mexico from 1990 to 1994. Information abstracted included demographics, mechanism of death, presence of alcohol/drugs, clinical depression, intimate partner violence, health problems, and other variables. Annual rates were calculated based on the 1990 census. The New Mexico female suicide death rate was 8.2/100,000 persons per year (n = 313), nearly twice the U. S. rate of 4.5/100,000. Non-Hispanic whites were overrepresented compared to Hispanics and American Indians. Decedents ranged in age from 14 to 93 years (median = 43 years). Firearms accounted for 45.7% of the suicide deaths, followed by ingested poisons (29.1%), hanging (10.5%), other (7.7%), and inhaled poisons (7.0%). Intimate partner violence was documented in 5.1% of female suicide deaths; in an additional 22.1% of cases, a male intimate partner fought with or separated from the decedent immediately preceding the suicide. Nearly two-thirds (65.5%) of the decedents had alcohol or drugs present in their blood at autopsy. Among decedents who had alcohol present (34.5%), blood alcohol levels were far higher among American Indians compared to Hispanics and non-Hispanic Whites (p = .01). Interpersonal conflict was documented in over 25% of cases, indicating that studies of the mortality of intimate partner violence should include victims of both suicide and homicide deaths to fully characterize the mortality patterns of intimate partner violence.


Shore & Beach ◽  
2020 ◽  
pp. 83-91
Author(s):  
Tim Carruthers ◽  
Richard Raynie ◽  
Alyssa Dausman ◽  
Syed Khalil

Natural resources of coastal Louisiana support the economies of Louisiana and the whole of the United States. However, future conditions of coastal Louisiana are highly uncertain due to the dynamic processes of the Mississippi River delta, unpredictable storm events, subsidence, sea level rise, increasing temperatures, and extensive historic management actions that have altered natural coastal processes. To address these concerns, a centralized state agency was formed to coordinate coastal protection and restoration effort, the Coastal Protection and Restoration Authority (CPRA). This promoted knowledge centralization and supported informal adaptive management for restoration efforts, at that time mostly funded through the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA). Since the Deepwater Horizon (DWH) oil spill in 2010 and the subsequent settlement, the majority of restoration funding for the next 15 years will come through one of the DWH mechanisms; Natural Resource and Damage Assessment (NRDA), the RESTORE Council, or National Fish and Wildlife Foundation –Gulf Environmental Benefit Fund (NFWF-GEBF). This has greatly increased restoration effort and increased governance complexity associated with project funding, implementation, and reporting. As a result, there is enhanced impetus to formalize and unify adaptive management processes for coastal restoration in Louisiana. Through synthesis of input from local coastal managers, historical and current processes for project and programmatic implementation and adaptive management were summarized. Key gaps and needs to specifically increase implementation of adaptive management within the Louisiana coastal restoration community were identified and developed into eight tangible and specific recommendations. These were to streamline governance through increased coordination amongst implementing entities, develop a discoverable and practical lessons learned and decision database, coordinate ecosystem reporting, identify commonality of restoration goals, develop a common cross-agency adaptive management handbook for all personnel, improve communication (both in-reach and outreach), have a common repository and clearing house for numerical models used for restoration planning and assessment, and expand approaches for two-way stakeholder engagement throughout the restoration process. A common vision and maximizing synergies between entities can improve adaptive management implementation to maximize ecosystem and community benefits of restoration effort in coastal Louisiana. This work adds to current knowledge by providing specific strategies and recommendations, based upon extensive engagement with restoration practitioners from multiple state and federal agencies. Addressing these practitioner-identified gaps and needs will improve engagement in adaptive management in coastal Louisiana, a large geographic area with high restoration implementation within a complex governance framework.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1331
Author(s):  
Scott Ikard ◽  
Andrew Teeple ◽  
Delbert Humberson

The Rio Grande/Río Bravo del Norte (hereinafter referred to as the “Rio Grande”) is the primary source of recharge to the Mesilla Basin/Conejos-Médanos aquifer system in the Mesilla Valley of New Mexico and Texas. The Mesilla Basin aquifer system is the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system and is the primary source of water supply to several communities along the United States–Mexico border in and near the Mesilla Valley. Identifying the gaining and losing reaches of the Rio Grande in the Mesilla Valley is therefore critical for managing the quality and quantity of surface and groundwater resources available to stakeholders in the Mesilla Valley and downstream. A gradient self-potential (SP) logging survey was completed in the Rio Grande across the Mesilla Valley between 26 June and 2 July 2020, to identify reaches where surface-water gains and losses were occurring by interpreting an estimate of the streaming-potential component of the electrostatic field in the river, measured during bankfull flow. The survey, completed as part of the Transboundary Aquifer Assessment Program, began at Leasburg Dam in New Mexico near the northern terminus of the Mesilla Valley and ended ~72 kilometers (km) downstream at Canutillo, Texas. Electric potential data indicated a net losing condition for ~32 km between the Leasburg Dam and Mesilla Diversion Dam in New Mexico, with one ~200-m long reach showing an isolated saline-groundwater gaining condition. Downstream from the Mesilla Diversion Dam, electric-potential data indicated a neutral-to-mild gaining condition for 12 km that transitioned to a mild-to-moderate gaining condition between 12 and ~22 km downstream from the dam, before transitioning back to a losing condition along the remaining 18 km of the survey reach. The interpreted gaining and losing reaches are substantiated by potentiometric surface mapping completed in hydrostratigraphic units of the Mesilla Basin aquifer system between 2010 and 2011, and corroborated by surface-water temperature and conductivity logging and relative median streamflow gains and losses, quantified from streamflow measurements made annually at 16 seepage-measurement stations along the survey reach between 1988 and 1998 and between 2004 and 2013. The gaining and losing reaches of the Rio Grande in the Mesilla Valley, interpreted from electric potential data, compare well with relative median streamflow gains and losses along the 72-km long survey reach.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Megan M. Friggens ◽  
Rachel A. Loehman ◽  
Connie I. Constan ◽  
Rebekah R. Kneifel

Abstract Background Wildfires of uncharacteristic severity, a consequence of climate changes and accumulated fuels, can cause amplified or novel impacts to archaeological resources. The archaeological record includes physical features associated with human activity; these exist within ecological landscapes and provide a unique long-term perspective on human–environment interactions. The potential for fire-caused damage to archaeological materials is of major concern because these resources are irreplaceable and non-renewable, have social or religious significance for living peoples, and are protected by an extensive body of legislation. Although previous studies have modeled ecological burn severity as a function of environmental setting and climate, the fidelity of these variables as predictors of archaeological fire effects has not been evaluated. This study, focused on prehistoric archaeological sites in a fire-prone and archaeologically rich landscape in the Jemez Mountains of New Mexico, USA, identified the environmental and climate variables that best predict observed fire severity and fire effects to archaeological features and artifacts. Results Machine learning models (Random Forest) indicate that topography and variables related to pre-fire weather and fuel condition are important predictors of fire effects and severity at archaeological sites. Fire effects were more likely to be present when fire-season weather was warmer and drier than average and within sites located in sloped, treed settings. Topographic predictors were highly important for distinguishing unburned, moderate, and high site burn severity as classified in post-fire archaeological assessments. High-severity impacts were more likely at archaeological sites with southern orientation or on warmer, steeper, slopes with less accumulated surface moisture, likely associated with lower fuel moistures and high potential for spreading fire. Conclusions Models for predicting where and when fires may negatively affect the archaeological record can be used to prioritize fuel treatments, inform fire management plans, and guide post-fire rehabilitation efforts, thus aiding in cultural resource preservation.


1997 ◽  
Vol 2 (1) ◽  
pp. 27-46 ◽  
Author(s):  
Susan K. Jacohson ◽  
John J. Arana ◽  
Mallory D. McDuff

The increasing cultural and ethnic diversity in the United States should challenge environmental interpreters to offer programs that attract a variety of audiences. This study investigated minority involvement at Florida's nature centers through a census of 77 nature center directors throughout Florida as well as a survey of 21 minority staff working at these educational facilities. School programs at the nature centers are the primary method for reaching minorities; few programs involve minority adults from the community. The focus of the one-day visits for students is primarily nature awareness, with little emphasis on influencing knowledge or attitudes about local issues, human-environment relationships, or actions to reduce environmental problems. The results indicate the need for nature centers to expand their programs to offer long-term, community-based environmental interpretation for a diverse public.


Sign in / Sign up

Export Citation Format

Share Document