scholarly journals A Novel Initialization Technique for Decadal Climate Predictions

2021 ◽  
Vol 3 ◽  
Author(s):  
Danila Volpi ◽  
Virna L. Meccia ◽  
Virginie Guemas ◽  
Pablo Ortega ◽  
Roberto Bilbao ◽  
...  

Model initialization is a matter of transferring the observed information available at the start of a forecast to the model. An optimal initialization is generally recognized to be able to improve climate predictions up to a few years ahead. However, systematic errors in models make the initialization process challenging. When the observed information is transferred to the model at the initialization time, the discrepancy between the observed and model mean climate causes the drift of the prediction toward the model-biased attractor. Although such drifts can be generally accounted for with a posteriori bias correction techniques, the bias evolving along the prediction might affect the variability that we aim at predicting, and disentangling the small magnitude of the climate signal from the initial drift to be removed represents a challenge. In this study, we present an innovative initialization technique that aims at reducing the initial drift by performing a quantile matching between the observed state at the initialization time and the model state distribution. The adjusted initial state belongs to the model attractor and the observed variability amplitude is scaled toward the model one. Multi-annual climate predictions integrated for 5 years and run with the EC-Earth3 Global Coupled Model have been initialized with this novel methodology, and their prediction skill has been compared with the non-initialized historical simulations from CMIP6 and with the same decadal prediction system but based on full-field initialization. We perform a skill assessment of the surface temperature, the heat content in the ocean upper layers, the sea level pressure, and the barotropic ocean circulation. The added value of the quantile matching initialization is shown in the North Atlantic subpolar region and over the North Pacific surface temperature as well as for the ocean heat content up to 5 years. Improvements are also found in the predictive skill of the Atlantic Meridional Overturning Circulation and the barotropic stream function in the Labrador Sea throughout the 5 forecast years when compared to the full field method.

The Holocene ◽  
2018 ◽  
Vol 28 (5) ◽  
pp. 791-805 ◽  
Author(s):  
Antony Blundell ◽  
Paul DM Hughes ◽  
Frank M Chambers

Energy carried by warm tropical water, transported via the Atlantic Meridional Overturning Circulation (AMOC), plays a vital role in regulating the climate of regions bordering the North Atlantic Ocean. Previous phases of elevated freshwater input to areas of North Atlantic Deep Water (NADW) production in the early to mid-Holocene have been linked with slow-downs in the AMOC and changes in regional climate. Newfoundland’s proximity in the North Atlantic region to the confluence of the Gulf Stream and the Labrador Current and to an area of NADW production in the Labrador Sea makes it an ideal testing ground to investigate the influence of past fluctuations in ocean circulation on terrestrial ecosystems. We use multi-proxy peat-based records from the east coast of Newfoundland to derive a proxy-climate signal for the past 8000 years, which we have compared with changes in ocean circulation. Prominent shifts towards near-surface bog water-table levels, reflecting cooler/wetter climatic conditions, are evident in the early mid-Holocene at c. 7830, 7500, 7220 and 6600 cal. BP with minor changes occurring at c. 6340 and 6110 cal. BP. These events are coherent with evidence of meltwater injections into the N. Atlantic and of reduced NADW production. More recent increases in bog surface wetness in the mid- to late Holocene at c. 4290 and c. 2610 cal. BP are also consistent with reported periods of reduced NADW production. Coherence between the bog-derived palaeoclimate record developed from Newfoundland and evidence of fluctuations in ocean current strength is apparent in the early mid-Holocene.


2010 ◽  
Vol 6 (5) ◽  
pp. 1811-1852 ◽  
Author(s):  
A. Bozbiyik ◽  
M. Steinacher ◽  
F. Joos ◽  
T. F. Stocker

Abstract. CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes that are well documented in the literature but there is a clear distinction between northern and southern perturbations. Changes in the physical variables affect, in return, the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large re-organizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results.


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 809-817 ◽  
Author(s):  
Damien G. Desbruyères ◽  
Herlé Mercier ◽  
Guillaume Maze ◽  
Nathalie Daniault

Abstract. The Atlantic Meridional Overturning Circulation (AMOC) impacts ocean and atmosphere temperatures on a wide range of temporal and spatial scales. Here we use observational datasets to validate model-based inferences on the usefulness of thermodynamics theory in reconstructing AMOC variability at low frequency, and further build on this reconstruction to provide prediction of the near-future (2019–2022) North Atlantic state. An easily observed surface quantity – the rate of warm to cold transformation of water masses at high latitudes – is found to lead the observed AMOC at 45∘ N by 5–6 years and to drive its 1993–2010 decline and its ongoing recovery, with suggestive prediction of extreme intensities for the early 2020s. We further demonstrate that AMOC variability drove a bi-decadal warming-to-cooling reversal in the subpolar North Atlantic before triggering a recent return to warming conditions that should prevail at least until 2021. Overall, this mechanistic approach of AMOC variability and its impact on ocean temperature brings new key aspects for understanding and predicting climatic conditions in the North Atlantic and beyond.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2008 ◽  
Vol 38 (9) ◽  
pp. 1913-1930 ◽  
Author(s):  
Armin Köhl ◽  
Detlef Stammer

Abstract The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.


2007 ◽  
Vol 20 (19) ◽  
pp. 4940-4956 ◽  
Author(s):  
Uta Krebs ◽  
A. Timmermann

Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.


2020 ◽  
Author(s):  
Dakota Holmes ◽  
Audrey Morley

<p>Abrupt climate events are generally believed to be characteristic of glacial (intermediate-to-large cryosphere) climate states, requiring either sizeable ice-sheets or large freshwater pulses to act as triggers for abrupt climate changes to occur. Amplification occurs when these triggers bear upon the Atlantic Meridional Overturning Circulation (AMOC). However, the focus on glacial climate states in abrupt climate change research has led to an underrepresentation of research into interglacial periods. It thus remains unclear whether high-magnitude climate variability requires large cryosphere-driven feedbacks or whether it can also occur under low ice conditions. Here we present a high resolution analysis of surface and deep water components of the AMOC spanning the transition from Marine Isotope Stage (MIS) 19c to 19a to test if orbital boundary conditions similar to our current Holocene can accommodate abrupt climate events. Sediment core DSDP 610B (53°13.297N, 18°53.213W), located approximately 700-km west of Ireland, was specifically chosen due to its high sedimentation rate during interglacial periods, excellent core recovery over the Quaternary and its unique geographical location. Above the core site, the dominant oceanographic feature is the North Atlantic Current and at 2417-m water depth, 610B is influenced by Wyville Thomson Overflow Water flowing southwards. A multiproxy approach including paired grain size analysis, planktic foraminifer assemblage counts, and ice-rafted debris counts within the same samples allows us to resolve the timing between both surface and bottom components of the AMOC and their response to abrupt climate events during MIS-19 in the eastern subpolar gyre. This study is societally relevant as future freshwater inputs from a melting Greenland ice sheet may impact ocean circulation, potentially causing shifts in climate for many European countries.</p>


2011 ◽  
Vol 7 (1) ◽  
pp. 319-338 ◽  
Author(s):  
A. Bozbiyik ◽  
M. Steinacher ◽  
F. Joos ◽  
T. F. Stocker ◽  
L. Menviel

Abstract. CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.


Sign in / Sign up

Export Citation Format

Share Document