scholarly journals microRNA-377 Signaling Modulates Anticancer Drug-Induced Cardiotoxicity in Mice

2021 ◽  
Vol 8 ◽  
Author(s):  
John Henderson ◽  
Praveen K. Dubey ◽  
Mallikarjun Patil ◽  
Sarojini Singh ◽  
Shubham Dubey ◽  
...  

Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.

2015 ◽  
Vol 122 (4) ◽  
pp. 795-805 ◽  
Author(s):  
Jessica M. Olson ◽  
Yasheng Yan ◽  
Xiaowen Bai ◽  
Zhi-Dong Ge ◽  
Mingyu Liang ◽  
...  

Abstract Background: Anesthetic cardioprotection reduces myocardial infarct size after ischemia–reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. Methods: MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. Results: Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). Conclusions: The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


2013 ◽  
Vol 305 (4) ◽  
pp. H446-H458 ◽  
Author(s):  
Helen E. Collins ◽  
Xiaoyuan Zhu-Mauldin ◽  
Richard B. Marchase ◽  
John C. Chatham

Store-operated Ca2+ entry (SOCE) is critical for Ca2+ signaling in nonexcitable cells; however, its role in the regulation of cardiomyocyte Ca2+ homeostasis has only recently been investigated. The increased understanding of the role of stromal interaction molecule 1 (STIM1) in regulating SOCE combined with recent studies demonstrating the presence of STIM1 in cardiomyocytes provides support that this pathway co-exists in the heart with the more widely recognized Ca2+ handling pathways associated with excitation-contraction coupling. There is now substantial evidence that STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo, and there is growing support for the contribution of SOCE to Ca2+ overload associated with ischemia/reperfusion injury. Here, we provide an overview of our current understanding of the molecular regulation of SOCE and discuss the evidence supporting the role of STIM1/Orai1-mediated SOCE in regulating cardiomyocyte function.


2018 ◽  
Vol 314 (6) ◽  
pp. G655-G667 ◽  
Author(s):  
Zhao Lei ◽  
Meihong Deng ◽  
Zhongjie Yi ◽  
Qian Sun ◽  
Richard A. Shapiro ◽  
...  

Liver ischemia-reperfusion (I/R) injury occurs through induction of oxidative stress and release of damage-associated molecular patterns (DAMPs), including cytosolic DNA released from dysfunctional mitochondria or from the nucleus. Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) is a cytosolic DNA sensor known to trigger stimulator of interferon genes (STING) and downstream type 1 interferon (IFN-I) pathways, which are pivotal innate immune system responses to pathogen. However, little is known about the role of cGAS/STING in liver I/R injury. We subjected C57BL/6 (WT), cGAS knockout (cGAS−/−), and STING-deficient (STINGgt/gt) mice to warm liver I/R injury and that found cGAS−/− mice had significantly increased liver injury compared with WT or STINGgt/gt mice, suggesting a protective effect of cGAS independent of STING. Liver I/R upregulated cGAS in vivo and also in vitro in hepatocytes subjected to anoxia/reoxygenation (A/R). We confirmed a previously published finding that hepatocytes do not express STING under normoxic conditions or after A/R. Hepatocytes and liver from cGAS−/− mice had increased cell death and reduced induction of autophagy under hypoxic conditions as well as increased apoptosis. Protection could be restored in cGAS−/− hepatocytes by overexpression of cGAS or by pretreatment of mice with autophagy inducer rapamycin. Our findings indicate a novel protective role for cGAS in the regulation of autophagy during liver I/R injury that occurs independently of STING. NEW & NOTEWORTHY Our studies are the first to document the important role of cGAS in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that cGAS protects liver from I/R injury in a STING-independent manner.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Sho Hasegawa ◽  
Tsuyoshi Inoue ◽  
Masaomi Nangaku ◽  
Reiko Inagi

Abstract Background and Aims The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. Here, we focused on sympathetic signaling in macrophages and sought to determine its detailed roles in lipopolysaccharide (LPS)-induced systemic inflammation and renal ischemia/reperfusion injury (IRI). Method In vitro, RAW 264.7 cells and murine peritoneal macrophages were used to determine the effects of β2 adrenergic receptor (Adrb2) signaling on LPS-induced proinflammatory cytokine (tumor necrosis factor-α; TNF-α) production. We also identified the critical gene that mediates the anti-inflammatory effect of Adrb2 signaling by RNA-sequencing. In vivo, we examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. The involvement of macrophage Adrb2 signaling was confirmed by macrophage-specific Adrb2 conditional knockout (cKO) mice and adoptive transfer of salbutamol-treated macrophages. We also performed single-cell RNA sequencing of renal tissue to analyze the renoprotective role of salbutamol-treated macrophages in detail. Results In vitro, norepinephrine, a sympathetic neurotransmitter, suppressed LPS-induced TNF-α production in macrophages. This anti-inflammatory effect was also induced by salbutamol and reversed by butoxamine (a selective Adrb2 antagonist) in a dose-dependent manner, indicating the importance of Adrb2 in this process. RNA sequencing of these macrophages revealed that T-cell immunoglobulin and mucin-3 (Tim3) expressions were upregulated by the activation of Adrb2 signaling, which partially mediated the anti-inflammatory phenotypic alteration in macrophages. In vivo, salbutamol administration mitigated LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. Adoptive transfer of salbutamol-treated macrophages also protected against renal IRI (Figure 1). Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. Conclusion The activation of β2 adrenergic receptor signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expressions, which blocks LPS-induced systemic inflammation and protects against renal IRI.


2002 ◽  
Vol 2 ◽  
pp. 943-948 ◽  
Author(s):  
Pidder Jansen-Dürr

Replicative senescence of human cells in primary culture is a widely accepted model for studying the molecular mechanisms of human ageing. The standard model used for studying human ageing consists of fibroblasts explanted from the skin and grown intoin vitrosenescence. From this model, we have learned much about molecular mechanisms underlying the human ageing process; however, the model presents clear limitations. In particular, a long-standing dogma holds that replicative senescence involves resistance to apoptosis, a belief that has led to considerable confusion concerning the role of apoptosis during human ageing. While there are data suggesting that apoptotic cell death plays a key role for ageingin vitroand in the pathogenesis of various age-associated diseases, this is not reflected in the current literature onin vitrosenescence. In this article, I summarize key findings concerning the relationship between apoptosis and ageingin vivoand also review the literature concerning the role of apoptosis during in vitro senescence. Recent experimental findings, summarized in this article, suggest that apoptotic cell death (and probably other forms of cell death) are important features of the ageing process that can also be recapitulated in tissue culture systems to some extent. Another important lesson to learn from these studies is that mechanisms ofin vivosenescence differ considerably between various histotypes.


2022 ◽  
Vol 23 (2) ◽  
pp. 735
Author(s):  
Elena V. Mitroshina ◽  
Maria M. Loginova ◽  
Roman S. Yarkov ◽  
Mark D. Urazov ◽  
Maria O. Novozhilova ◽  
...  

Ischemic brain injury is a widespread pathological condition, the main components of which are a deficiency of oxygen and energy substrates. In recent years, a number of new forms of cell death, including necroptosis, have been described. In necroptosis, a cascade of interactions between the kinases RIPK1 and RIPK3 and the MLKL protein leads to the formation of a specialized death complex called the necrosome, which triggers MLKL-mediated destruction of the cell membrane and necroptotic cell death. Necroptosis probably plays an important role in the development of ischemia/reperfusion injury and can be considered as a potential target for finding methods to correct the disruption of neural networks in ischemic damage. In the present study, we demonstrated that blockade of RIPK1 kinase by Necrostatin-1 preserved the viability of cells in primary hippocampal cultures in an in vitro model of glucose deprivation. The effect of RIPK1 blockade on the bioelectrical and metabolic calcium activity of neuron-glial networks in vitro using calcium imaging and multi-electrode arrays was assessed for the first time. RIPK1 blockade was shown to partially preserve both calcium and bioelectric activity of neuron-glial networks under ischemic factors. However, it should be noted that RIPK1 blockade does not preserve the network parameters of the collective calcium dynamics of neuron-glial networks, despite the maintenance of network bioelectrical activity (the number of bursts and the number of spikes in the bursts). To confirm the data obtained in vitro, we studied the effect of RIPK1 blockade on the resistance of small laboratory animals to in vivo modeling of hypoxia and cerebral ischemia. The use of Necrostatin-1 increases the survival rate of C57BL mice in modeling both acute hypobaric hypoxia and ischemic brain damage.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


2018 ◽  
Vol 48 (2) ◽  
pp. 528-539 ◽  
Author(s):  
Hongxue Sun ◽  
Di Zhong ◽  
Cheng Wang ◽  
Yilei Sun ◽  
Jiaying Zhao ◽  
...  

Background/Aims: This study investigated the role of the microRNA miR-298 and its target Act1 in ischemic stroke. Methods: Cell viability was assessed with the 3-(4,5-dimethythiazol-2- yl)-2,5-diphenyl tetrazolium bromide assay. Apoptotic cells were detected by flow cytometry, and mRNA and protein expression were assessed by quantitative real-time PCR and western blotting, respectively. The regulatory relationship between miR-298 and Act1 was evaluated with the luciferase assay. To clarify the role of Act1 following ischemic stroke, the transcript was knocked down by short interfering RNA. The in vitro findings were validated in a mouse model of middle cerebral artery occlusion by administration of miR-298 mimic. Results: Act1 was upregulated whereas miR-298 was downregulated in ischemic stroke. miR-298 overexpression by transfection of a mimic suppressed Act1 protein levels in vitro and in vivo, and the luciferase assay showed that miR-298 directly binds to the 3’ untranslated region of the Act1 transcript. miR-298 overexpression enhanced cell apoptosis and autophagy and exacerbated ischemic infarction and neurological deficits, effects that were exerted via negative regulation of Act1/c-Jun N-terminal kinase (JNK)/nuclear factor (NF)-κB signaling and downstream autophagy pathways. Conclusions: Upregulation of miR-298 following ischemic stroke promotes brain injury in vitro and vivo by inhibiting the Act1/JNK/NF-κB signaling cascade and the downstream autophagy pathway. Therapeutic strategies that target miR-298 could be beneficial for the treatment of ischemic stroke.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1863
Author(s):  
Joseph Flores-Toro ◽  
Sung-Kook Chun ◽  
Jun-Kyu Shin ◽  
Joan Campbell ◽  
Melissa Lichtenberger ◽  
...  

Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death. It is unknown how I/R in aged livers affects CAST. Human and mouse liver biopsies at different ages were collected during in vivo I/R. Hepatocytes were isolated from 3-month- (young) and 26-month-old (aged) mice, and challenged with short in vitro simulated I/R. Cell death, protein expression, autophagy, and mitochondrial permeability transition (MPT) between the two age groups were compared. Adenoviral vector was used to overexpress CAST. Significant cell death was observed only in reperfused aged hepatocytes. Before the commencement of ischemia, CAST expression in aged human and mouse livers and mouse hepatocytes was markedly greater than that in young counterparts. However, reperfusion substantially decreased CAST in aged human and mouse livers. In hepatocytes, reperfusion rapidly depleted aged cells of CAST, cleaved autophagy-related protein 5 (ATG5), and induced defective autophagy and MPT onset, all of which were blocked by CAST overexpression. Furthermore, mitochondrial morphology was shifted toward an elongated shape with CAST overexpression. In conclusion, CAST in aged livers is intrinsically short-lived and lost after short I/R. CAST depletion contributes to age-dependent liver injury after I/R.


Sign in / Sign up

Export Citation Format

Share Document