scholarly journals Cell Death and Ageing – A Question of Cell Type

2002 ◽  
Vol 2 ◽  
pp. 943-948 ◽  
Author(s):  
Pidder Jansen-Dürr

Replicative senescence of human cells in primary culture is a widely accepted model for studying the molecular mechanisms of human ageing. The standard model used for studying human ageing consists of fibroblasts explanted from the skin and grown intoin vitrosenescence. From this model, we have learned much about molecular mechanisms underlying the human ageing process; however, the model presents clear limitations. In particular, a long-standing dogma holds that replicative senescence involves resistance to apoptosis, a belief that has led to considerable confusion concerning the role of apoptosis during human ageing. While there are data suggesting that apoptotic cell death plays a key role for ageingin vitroand in the pathogenesis of various age-associated diseases, this is not reflected in the current literature onin vitrosenescence. In this article, I summarize key findings concerning the relationship between apoptosis and ageingin vivoand also review the literature concerning the role of apoptosis during in vitro senescence. Recent experimental findings, summarized in this article, suggest that apoptotic cell death (and probably other forms of cell death) are important features of the ageing process that can also be recapitulated in tissue culture systems to some extent. Another important lesson to learn from these studies is that mechanisms ofin vivosenescence differ considerably between various histotypes.

2019 ◽  
Vol 4 (2) ◽  
pp. 93-95 ◽  
Author(s):  
Jieru Wan ◽  
Honglei Ren ◽  
Jian Wang

Intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity. However, we have few options for ICH therapy and limited knowledge about post-ICH neuronal death and related mechanisms. In the aftermath of ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. Indeed, iron chelation therapy has shown efficacy in preclinical ICH studies. Recently, an iron-dependent form of non-apoptotic cell death known as ferroptosis was identified. It is characterised by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. The ROS cause damage to nucleic acids, proteins and lipid membranes, and eventually cell death. Recently, we and others discovered that ferroptosis does occur after haemorrhagic stroke in vitro and in vivo and contributes to neuronal death. Inhibition of ferroptosis is beneficial in several in vivo and in vitro ICH conditions. This minireview summarises current research on iron toxicity, lipid peroxidation and ferroptosis in the pathomechanisms of ICH, the underlying molecular mechanisms of ferroptosis and the potential for combined therapeutic strategies. Understanding the role of ferroptosis after ICH will provide a vital foundation for cell death-based ICH treatment and prevention.


2001 ◽  
Vol 75 (15) ◽  
pp. 7114-7121 ◽  
Author(s):  
Jennifer L. Nargi-Aizenman ◽  
Diane E. Griffin

ABSTRACT Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.


2018 ◽  
Vol 233 (9) ◽  
pp. 7134-7142 ◽  
Author(s):  
Long-Bin Jeng ◽  
Bharath Kumar Velmurugan ◽  
Ming-Cheng Chen ◽  
Hsi-Hsien Hsu ◽  
Tsung-Jung Ho ◽  
...  

2008 ◽  
Vol 56 (22) ◽  
pp. 10600-10605 ◽  
Author(s):  
Konstantin Tsoyi ◽  
Hyung Bin Park ◽  
Young Min Kim ◽  
Jong Il Chung ◽  
Sung Chul Shin ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2745-2745
Author(s):  
Jun Xia ◽  
Stephanie Sun ◽  
Matthew RM Jotte ◽  
Geoffrey L. Uy ◽  
Osnat Bohana-Kashtan ◽  
...  

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that accounts for 10-15% of pediatric and 25% of adult ALL cases. CXCL12 is a CXC chemokine that is constitutively expressed at high levels in the bone marrow. CXCR4 is the major receptor for CXCL12 and is by far the most highly expressed chemokine receptor on T-ALL cells. Two groups recently showed that genetic loss of CXCR4 signaling in murine or human T-ALL cells markedly suppressed their growth in vivo. We previously reported that BL-8040, a potent new CXCR4 antagonist with sustained receptor occupancy, is active as monotherapy against T-ALL in mice. Indeed, a 2-week course of daily BL-8040 resulted in a median reduction in tumor burden of 32.1-fold (range 6.8 to 176) across 5 different T-ALL xenografts. Preliminary data from a clinical trial of BL-8040 plus nelarabine for relapsed T-ALL also suggest therapeutic activity, with a complete remission rate observed in 4/8 patients (50%), which compares favorably to published response rates of approximately 30% with single agent nelarabine. Here, we explore molecular mechanisms by which CXCR4 blockade induces T-ALL death. NOD-scid IL2Rgammanull (NSG) mice were injected with P12-Ichikawa cells, a T-ALL cell line modified to express click beetle red luciferase and GFP. Following T-ALL engraftment, mice were treated with a single dose of BL-8040, and then leukemic cells in the bone marrow harvested 24-48 hours later. Treatment with BL-8040 resulted in a marked suppression of Akt and Erk1/2 phosphorylation, suggesting that signaling through CXCR4 is the major source of PI3 kinase pathway activation in T-ALL cells. Surprisingly, treatment with BL-8040 did not affect cellular proliferation, as measured by Ki67/FxCycle Violet staining or by EdU labeling. Moreover, no increase in apoptosis, as measured by annexin V or activated caspase 3 expression, was observed. These data suggest that CXCR4 blockade induces a non-apoptotic cell death. To explore this possibility further, we performed transcriptome sequencing on T-ALL cells recovered from mice 24 hours after 1 dose of BL-8040. A total of 151 differentially expressed genes (FDR of < 0.05% and ≥ 2-fold change) were identified. Gene set enrichment analysis was strongly positive for alterations in oxidative phosphorylation, ribosome biogenesis, and carbohydrate metabolism. Ribosome function was assessed using O-propargyl-puromycin (OPP), which monitors global protein translation. No difference in global protein synthesis in T-ALL cells was observed after CXCR4 blockade in vivo. T-ALL cells are dependent on glutamine as a source of carbon, and PI3 kinase signaling positively regulates glutaminolysis. Thus, we hypothesized that CXCR4 blockade may induce T-ALL cell death by reducing glutamine metabolism. However, treatment of T-ALL cells in vitro with BL-8040 did not alter the cellular levels of glutamine or glutamate, as measured using a commercial bioluminescent assay. Confirmatory metabolic tracing studies using 13C-labeled glutamine and glucose are in progress. Finally, to explore the reduction in oxidative phosphorylation, we examined mitochondria function using Mitotracker Green. Treatment of T-ALL cells in vitro with BL-8040 for 24-48 hours induced a significant decrease in mitochondria number, suggesting induction of mitophagy. Collectively, these data suggest that T-ALL cells are addicted to CXCR4 signaling in vivo. CXCR4 blockade with BL-8040 induces a non-apoptotic cell death that is characterized by a loss of mitochondria. Disclosures Uy: Astellas: Consultancy; Pfizer: Consultancy; Curis: Consultancy; GlycoMimetics: Consultancy. Bohana-Kashtan:BiolineRx: Employment, Equity Ownership. Sorani:BiolineRx: Employment, Equity Ownership. Vainstein:BiolineRx: Employment, Equity Ownership.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 340 ◽  
Author(s):  
Simona Neri ◽  
Rosa Maria Borzì

Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.


1999 ◽  
Vol 189 (11) ◽  
pp. 1691-1698 ◽  
Author(s):  
Noboru Motoyama ◽  
Tohru Kimura ◽  
Tomomi Takahashi ◽  
Takeshi Watanabe ◽  
Toru Nakano

bcl-x is a member of the bcl-2 gene family, which regulates apoptotic cell death in various cell lineages. There is circumstantial evidence suggesting that bcl-x might play a role in the apoptosis of erythroid lineage cells, although there is no direct evidence. In this study, we used Bcl-X null mouse embryonic stem (ES) cells, and showed that Bcl-X is indispensable for the production of both embryonic primitive erythrocytes (EryP) and adult definitive erythrocytes (EryD) at the end of their maturation. In vivo, bcl-x−/− ES cells did not contribute to circulating EryD in adult chimeric mice that were produced by blastocyst microinjection of the bcl-x−/− ES cells. bcl-x−/− EryP and EryD were produced by in vitro differentiation induction of ES cells on macrophage colony-stimulating factor–deficient stromal cell line OP9, and further analysis was carried out. The emergence of immature EryP and EryD from bcl-x−/− ES cells was similar to that from bcl-x+/+ ES cells. However, prominent cell death of bcl-x−/− EryP and EryD occurred when the cells matured. The data show that the antiapoptotic function of bcl-x acts at the very end of erythroid maturation.


2021 ◽  
Author(s):  
Hanna S. Hong ◽  
Nneka E. Mbah ◽  
Mengrou Shan ◽  
Kristen Loesel ◽  
Lin Lin ◽  
...  

AbstractApoptotic cell death is a cell-intrinsic, immune tolerance mechanism that regulates the magnitude and resolution of T cell-mediated responses. Evasion of apoptosis is critical for the generation of memory T cells, as well as autoimmune T cells, and knowledge of the mechanisms that enable resistance to apoptosis will provide insight into ways to modulate their activity during protective and pathogenic responses. IL-17-producing CD4 T cells (TH17s) are long-lived, memory cells. These features enable their role in host defense, chronic inflammatory disorders, and anti-tumor immunity. A growing number of reports now indicate that TH17s in vivo require mitochondrial oxidative phosphorylation (OXPHOS), a metabolic phenotype that is poorly induced in vitro. To elucidate the role of OXPHOS in TH17 processes, we developed a system to polarize TH17s that metabolically resembled their in vivo counterparts. We discovered that directing TH17s to use OXPHOS promotes mitochondrial fitness, glutamine anaplerosis, and an anti-apoptotic phenotype marked by high BCL-XL and low BIM. Through competitive co-transfer experiments and tumor studies, we further revealed how OXPHOS protects TH17s from cell death while enhancing their persistence in the periphery and tumor microenvironment. Together, our work demonstrates a non-classical role of metabolism in regulating TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.


Sign in / Sign up

Export Citation Format

Share Document