scholarly journals Age and Paleoenvironmental Significance of the Frazer Beach Member—A New Lithostratigraphic Unit Overlying the End-Permian Extinction Horizon in the Sydney Basin, Australia

2021 ◽  
Vol 8 ◽  
Author(s):  
Stephen McLoughlin ◽  
Robert S. Nicoll ◽  
James L. Crowley ◽  
Vivi Vajda ◽  
Chris Mays ◽  
...  

The newly defined Frazer Beach Member of the Moon Island Beach Formation is identified widely across the Sydney Basin in both outcrop and exploration wells. This thin unit was deposited immediately after extinction of the Glossopteris flora (defining the terrestrial end-Permian extinction event). The unit rests conformably on the uppermost Permian coal seam in most places. A distinctive granule-microbreccia bed is locally represented at the base of the member. The unit otherwise consists of dark gray to black siltstone, shale, mudstone and, locally, thin lenses of fine-grained sandstone and tuff. The member represents the topmost unit of the Newcastle Coal Measures and is overlain gradationally by the Dooralong Shale or with a scoured (disconformable) contact by coarse-grained sandstones to conglomerates of the Coal Cliff Sandstone, Munmorah Conglomerate and laterally equivalent units. The member is characterized by a palynological “dead zone” represented by a high proportion of degraded wood fragments, charcoal, amorphous organic matter and fungal spores. Abundant freshwater algal remains and the initial stages of a terrestrial vascular plant recovery flora are represented by low-diversity spore-pollen suites in the upper part of the unit in some areas. These assemblages are referable to the Playfordiaspora crenulata Palynozone interpreted as latest Permian in age on the basis of high precision Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry (CA-IDTIMS) dating of thin volcanic ash beds within and stratigraphically bracketing the unit. Plant macrofossils recovered from the upper Frazer Beach Member and immediately succeeding strata are dominated by Lepidopteris (Peltaspermaceae) and Voltziopsis (Voltziales) with subsidiary pleuromeian lycopsids, sphenophytes, and ferns. Sparse vertebrate and invertebrate ichnofossils are also represented in the Frazer Beach Member or in beds immediately overlying this unit. The Frazer Beach Member is correlative, in part, with a thin interval of organic-rich mudrocks, commonly known as the “marker mudstone” capping the Permian succession further to the north in the Bowen, Galilee and Cooper basins. The broad geographic distribution of this generally <5-m-thick mudrock unit highlights the development in eastern Gondwana of extensive, short-lived, shallow lacustrine systems with impoverished biotas in alluvial plain settings in the immediate aftermath of the end-Permian biotic crisis.

2012 ◽  
Vol 78 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Nathan D. Webb ◽  
David A. Grimley ◽  
Andrew C. Phillips ◽  
Bruce W. Fouke

AbstractThe origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.


1997 ◽  
Vol 34 (3) ◽  
pp. 233-246 ◽  
Author(s):  
T. F. Morris ◽  
R. I. Kelly

The overburden of Essex and Kent counties, southwestern Ontario, has been described as consisting of a clayey silt to silty clay till overlying a gravelly unit resting on bedrock. Recent Quaternary geology mapping has identified additional materials and redefined the origin of others by determining the stratigraphic position and physical and geochemical properties of materials encountered in a sonic drilling program and field mapping. Catfish Creek Till was deposited on the bedrock surface during the Nissouri Stadial as ice advanced south over the area. As ice retreated during the Erie Interstade, fine-grained glaciolacustrine material was deposited in glacial Lake Leverett and overlay Catfish Creek Till. Tavistock Till was deposited over glacial Lake Leverett material as the Huron lobe readvanced south during the Port Bruce Stadial. As the Huron lobe retreated north, coarse-grained glaciolacustrine materials were deposited in the Leamington area. Ice from the Erie lobe deposited the Port Stanley Till along the north shore of Lake Erie in Kent County and deflected meltwater southward from the Huron lobe in the Blenheim area. A series of recessional moraines were deposited by the Huron lobe as it retreated north. The area is capped by a fine-grained glaciolacustrine deposit.


1948 ◽  
Vol 85 (2) ◽  
pp. 107-109 ◽  
Author(s):  
John Challinor

During the war a large new quarry was opened in the Longmyndian rocks of Haughmond Hill, Shropshire. It is near the south-east edge of the hill, to the west of the road running north from Upton Magna and one mile from the village. On the sketch-map in the Shrewsbury Memoir (p. 58) two arrows are shown, at about this locality, recording dips of 50° in a south-easterly direction. I was told that there was a very small quarry here before the large quarry was excavated. The present quarry is even larger than that near Haughmond Abbey (Shrewsbury Memoir, p. 48), on the north-west side of the Pre-Cambrian outcrop, and the two quarries offer extensive and splendidly displayed exposures of Longmyndian rocks, one in the coarse-grained Western Longmyndian and the other in the fine-grained Eastern Longmyndian.


2021 ◽  
pp. 1-18
Author(s):  
Jean-David Moreau ◽  
Jacques Sciau ◽  
Georges Gand ◽  
Emmanuel Fara

Abstract A recent excavation yielded 118 large tridactyl footprints in the Lower Jurassic Dolomitic Formation of the Causses Basin, at Mongisty in southern France. Most of the tracks are ascribed to Eubrontes giganteus Hitchcock, 1845. They are preserved on a surface of 53 m2 and form parallel rows with a preferential orientation towards the north. Such an abundance and density of E. giganteus is observed for the first time in the Early Jurassic from the Causses Basin. Sedimentological and ichnotaphonomical analyses show that the footprints were made at different time intervals, thus excluding the passage of a large group. In contrast to all other tracksites from the Dolomitic Formation, where tracks are preserved in fine-grained sediments corresponding to low-energy depositional palaeoenvironments, the tracks from Mongisty are preserved in coarse-grained sediment which is a matrix- to clast-supported breccia. Clasts consist of angular to sub-rounded, millimetric to centimetric-scale (up to 2 cm), poorly sorted, randomly oriented, homogeneous dolostone intraclasts floating in a dolomudstone matrix. Sedimentological analysis shows that the depositional environments of Mongisty varied from subtidal to intertidal/supratidal settings in a large and protected flat marsh. The lithology of the track-bearing surfaces indicates that the mudflat of the Causses Basin was sporadically affected by large mud flows that reworked and redeposited mudstone intraclasts coming from the erosion of upstream, dry and partially lithified mud beds. Throughout the world, this type of preservation of dinosaur tracks in tidal matrix- to clast-supported breccias remains rare.


Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1208-1224
Author(s):  
William M. Rittase ◽  
J. Douglas Walker ◽  
Joe Andrew ◽  
Eric Kirby ◽  
Elmira Wan

Abstract Exposed Pliocene–Pleistocene terrestrial strata provide an archive of the spatial and temporal development of a basin astride the sinistral Garlock fault in California. In the southern Slate Range and Pilot Knob Valley, an ∼2000-m-thick package of Late Cenozoic strata has been uplifted and tilted to the northeast. We name this succession the formation of Pilot Knob Valley and provide new chronologic, stratigraphic, and provenance data for these rocks. The unit is divided into five members that record different source areas and depositional patterns: (1) the lowest exposed strata are conglomeratic rocks derived from Miocene Eagle Crags volcanic field to the south and east across the Garlock fault; (2) the second member consists mostly of fine-grained rocks with coarser material derived from both southern and northern sources; and (3) the upper three members are primarily coarse-grained conglomerates and sandstones derived from the adjacent Slate Range to the north. Tephrochronologic data from four ash samples bracket deposition of the second member to 3.6–3.3 Ma and the fourth member to between 1.1 and 0.6 Ma. A fifth tephrochronologic sample from rocks south of the Garlock fault near Christmas Canyon brackets deposition of a possible equivalent to the second member of the formation of Pilot Knob Valley at ca. 3.1 Ma. Although the age of the base of the lowest member is not directly dated, regional stratigraphic and tectonic associations suggest that the basin started forming ca. 4–5 Ma. By ca. 3.6 Ma, the northward progradation fanglomerate sourced in the Eagle Crags region waned, and subsequent deposition occurred in shallow lacustrine systems. At ca. 3.3 Ma, southward progradation of conglomerates derived from the Slate Range began. Circa 1.1 Ma, continued southward progradation of fanglomerate with Slate Range sources is characterized by a shift to coarser grain sizes, interpreted to reflect uplift of the Slate Range. Overall, basin architecture and the temporal evolution of different source regions were controlled by activity on three regionally important faults—the Garlock, the Marine Gate, and the Searles Valley faults. The timing and style of motions on these faults appear to be directly linked to patterns of basin development.


Clay Minerals ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 625-639 ◽  
Author(s):  
C. I. Macaulay ◽  
A. E. Fallick ◽  
R. S. Haszeldine

AbstractIn Upper Jurassic sandstones of the Magnus Sandstone Member from the Magnus Oilfield in the North Sea, diagenetic kaolinite morphology and isotopic composition vary away from the Late Cimmerian unconformity. Near the unconformity, coarse-grained (15-30 μm) vermiform kaolinite morphology is most common, whereas downdip, 3 km away, fine-grained (∼10 μm) blocky morphology is prevalent. Kaolinite abundances increase downdip, away from the unconformity, and kaolinite near the unconformity has low δ18O (12·5-14·9%o smow) compared to that downdip (15·9−17·5%o). This reflects replacement of marine depositional pore-waters by meteoric water near the erosion surface. However, isotopic temperature estimates suggest that the majority of kaolinite formed at elevated burial temperatures of ~80°C, and not during subaerial exposure of the sandstone. The δD of kaolinite close to the unconformity is also lower than that downdip. Kaolinite morphology and isotopic composition record meteoric water ingress during Late Cimmerian subaerial erosion and retention of meteoric-derived water in the crest of the Magnus structure during burial diagenesis. Kaolinite formation during subaerial exposure is not of significance to the sandstone reservoir quality.


2019 ◽  
Vol 58 ◽  
pp. 131-138 ◽  
Author(s):  
Amit Shrestha ◽  
Govind Joshi ◽  
Lalu Prasad Paudel ◽  
Soma Nath Sapkota ◽  
Rafael Almeida

The Siwalik Group (Sub-Himalaya) is the east-west extending youngest mountain belt formed by the sediments derived from the rising Himalaya on the north. The Siwalik Group is separated from the Lesser Himalaya to the north by the Main Boundary Thrust (MBT), and the Indo-Gangetic Plain to the south by the Main Frontal Thrust (MFT). The study was carried out mainly along the Ratu Nadi, Kamala Nadi river sections and was lithostratigraphically divided into the Lower Siwalik, Middle Siwalik, and Upper Siwalik, from the bottom to the top section, respectively. The Lower Siwalik is composed of fine-grained greenish grey calcareous sandstone (subarkose and lithic arenite), variegated mudstone, and calcareous siltstone. The Lower Siwalik is exposed due to the Marine Khola Thrust in the Gadyauli Khola, and sandstone there is more indurated and non-calcareous. The Middle Siwalik is mainly comprised of the medium- to coarse-grained salt-and-pepper sandstone (arkose and subarkose) with large cross lamination, calcareous sand lenses, convolute bedding, dark grey siltstone and mudstone. Plant fossils are also present in the finely laminated clay bed of the Middle Siwalik along the Ratu Nadi section. The Upper Siwalik comprises of mud- to sand-supported pebble to cobble conglomerates.  


2017 ◽  
Vol 65 ◽  
pp. 87-123
Author(s):  
Finn Surlyk ◽  
Morten Bjerager ◽  
Stefan Piasecki ◽  
Lars Stemmerik

The classical marine uppermost Permian – Lower Triassic succession exposed on the north-east coast of Hold with Hope in East Greenland, south-east of Kap Stosch, is placed in the Wordie Creek Group. A new lithostratigraphic subdivision of the group is proposed here. The group comprises the revised Kap Stosch Formation overlain by the new Godthåb Golf Formation. The Kap Stosch Formation is dominated by alternating fine- and coarse-grained, cliff-forming units that constitute the basis for the erection of eight new members. They are (from below): 1. The Nebalopok Member, uppermost Permian, Hypophiceras triviale ammonoid zone, and lowermost Triassic, lower Griesbachian, Hypophiceras triviale – H. martini ammonoid zones, composed of basinal and base-of-slope siltstones and turbiditic sandstones. 2. The conglomeratic Immaqa Member (H. martini ammonoid zone), consisting of a thick clinoform-bedded unit commonly overlain by horizontally bedded deposits, representing the foreset and topset, respectively, of a Gilbert-type delta. 3. The fine-grained Fiskeplateau Member (H. martini ammonoid zone), composed of siltstones and fine-grained sandstones, representing basinal and delta front deposits. 4. The conglomerate-dominated Knolden Member (H. martini ammonoid zone), comprising a clinoform-bedded unit overlain by horizontally-bedded deposits, representing foreset and topset, respectively, of a Gilbert-type delta. 5. The fine-grained Pyramiden Member, (lower–upper Griesbachian Metophiceras subdemissum, Ophiceras commune and Wordieoceras decipiens ammonoid zones), composed of variegated siltstones and sandstones deposited in proximal basin and slope environments. 6. The Naasut Member (top Griesbachian, probably Wordieoceras decipiens ammonoid zone), dominated by thick structureless coarse-grained sandstones commonly showing clinoform bedding, deposited in slope, base-of-slope and proximal basin environments. 7. The Falkeryg Member (lowermost Dienerian, Bukkenites rosenkrantzi ammonoid zone), comprising thick, commonly pebbly sandstones deposited in shelf, slope and base-of-slope environments. 8. The Vestplateau Member (lower Dienerian, Bukkenites rosenkrantzi ammonoid zone) composed of siltstones and fine-grained sandstones deposited in basinal environments. The overlying Godthåb Golf Formation (Dienerian, Anodontophora breviformis – A. fassaensis bivalve zones) is dominated by shallow marine sandstones with several coarser grained levels. The rich ammonoid faunas of the Wordie Creek Group allow a biostratigraphic zonation which can be correlated with schemes from other parts of the Arctic region. This zonation is complemented with information on palyno, conodont, fish and isotope stratigraphy.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1111
Author(s):  
Xiaolei Chu ◽  
Jinggui Sun ◽  
Fanting Sun ◽  
Yanxiong Mei ◽  
Yang Liu ◽  
...  

The Hongshan complex, located in the southern part of the Taihang Mountains in the central part of the North China Craton, consists of syenite stocks (including fine-grained biotite aegirine syenite, medium-grained aegirine gabbro syenite, coarse-grained aegirine gabbro syenite, syenite pegmatite, and biotite syenite porphyry), with monzo-diorite and monzo-gabbro dikes. This paper presents zircon U-Pb ages and Hf isotope data and whole-rock geochemical data from the Hongshan complex. LA–ICP-MS zircon U–Pb age from the fine-grained biotite aegirine syenite, monzo-diorite, and monzo-gabbro are 129.3 ± 2.0Ma, 124.8 ± 1.3Ma, and 124.1 ± 0.9Ma, respectively, indicating their emplacement in the Early Cretaceous when the North China Craton was extensively reactivated. The monzo-diorite and monzo-gabbro have low SiO2 contents (48.94–57.75 wt%), total alkali contents (5.2–9.4 wt%), and εHf (t) values of −22.3 to −18.4 and are enriched in MgO (4.0–8.2 wt%), Al2O3 (14.3–15.8 wt%), light rare earth elements (LREEs) and large ion lithophile elements (LILEs). Interpretation of elemental and isotopic data suggests that the magma of monzo-diorite and monzo-gabbro were derived from partial melting of the enriched lithospheric mantle metasomatized by slab-derived hydrous fluids. Syenites with high alkali (K2O + Na2O = 9.4–13.0 wt%) and Sr contents (356–1737 ppm) and low Yb contents (0.94–2.65 ppm) are enriched in Al (Al2O3 = 16.4–19.1 wt%), but depleted in MgO (0.09–2.56 w%), Cr (Avg = 7.16 ppm), Co (Avg = 6.85 ppm) and Ni (Avg = 9.79 ppm), showing the geochemical features of adakitic rocks associated with thickened lower crust. Combining zircon 176Hf/177Hf ratios of 0.282176 to 0.282359, εHf(t) values of −18.3 to −11.8 and εNd (t) values of −11.1 to −8.2, we conclude that the syenite magma was derived from the mixing of the thickened lower crust and the enriched lithospheric mantle magma. These magma processes were controlled by Paleo-Pacific plate subduction and resulted in the destruction and thinning of the central North China Craton.


1994 ◽  
Vol 41 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Donna A. Porter ◽  
Margaret J. Guccione

AbstractLarge-magnitude flooding of the Mississippi River from proglacial lakes Agassiz and Superior most likely occurred between 11,300 and 10,900 and 9900 and 9500 yr B.P. The Charleston alluvial fan, a depositional remnant of one of these floods, is located at the head of a wide alluvial plain near Charleston, Missouri. The fan is an elongate, convex-up sand body (16 × 24 km) composed of medium- and fine-grained sand at least 8 m thick. This sand contrasts with the older coarse-grained sand of the braided stream surface to the west and south and younger silty clay of the meandering stream level to the north and east. A weakly developed soil separates the underlying braided steam deposits from the alluvial fan. A bulk-soil radiocarbon date of 10,590 ± 200 yr B.P. from the contact between the fan and clays of the meandering stream system indicates that the Charleston fan was deposited near the end of the early interval of flooding from Lake Agassiz about 10,900 yr B.P. If the Charleston fan is the last remnant of deglacial flooding in the lower Mississippi Valley, then deposition of significant quantities of sediment from largemagnitude floods between 10,000 and 9500 yr B.P. did not extend into the lower Mississippi Valley through Thebes Gap.


Sign in / Sign up

Export Citation Format

Share Document