scholarly journals Small-Scale Geochemical Heterogeneities and Seasonal Variation of Iron and Sulfide in Salt Marshes Revealed by Two-Dimensional Sensors

2021 ◽  
Vol 9 ◽  
Author(s):  
Qingzhi Zhu ◽  
J. Kirk Cochran ◽  
Christina Heilbrun ◽  
Hang Yin ◽  
Huan Feng ◽  
...  

Loss of tidal wetlands is a world-wide phenomenon. Many factors may contribute to such loss, but among them are geochemical stressors such as exposure of the marsh plants to elevated levels on hydrogen sulfide in the pore water of the marsh peat. Here we report the results of a study of the geochemistry of iron and sulfide at different seasons in unrestored (JoCo) and partially restored (Big Egg) salt marshes in Jamaica Bay, a highly urbanized estuary in New York City where the loss of salt marsh area has accelerated in recent years. The spatial and temporal 2-dimensional distribution patterns of dissolved Fe2+ and H2S in salt marshes were in situ mapped with high resolution planar sensors for the first time. The vertical profiles of Fe2+ and hydrogen sulfide, as well as related solutes and redox potentials in marsh were also evaluated by sampling the pore water at discrete depths. Sediment cores were collected at various seasons and the solid phase Fe, S, N, C, and chromium reducible sulfide in marsh peat at discrete depths were further investigated in order to study Fe and S cycles, and their relationship to the organic matter cycling at different seasons. Our results revealed that the redox sensitive elements Fe2+ and S2– showed significantly heterogeneous and complex three dimensional distribution patterns in salt marsh, over mm to cm scales, directly associated with the plant roots due to the oxygen leakage from roots and redox diagenetic reactions. We hypothesize that the oxic layers with low/undetected H2S and Fe2+ formed around roots help marsh plants to survive in the high levels of H2S by reducing sulfide absorption. The overall concentrations of Fe2+ and H2S and distribution patterns also seasonally varied with temperature change. H2S level in JoCo sampling site could change from <0.02 mM in spring to >5 mM in fall season, reflecting significantly seasonal variation in the rates of bacterial oxidation of organic matter at this marsh site. Solid phase Fe and S showed that very high fractions of the diagenetically reactive iron at JoCo and Big Egg were associated with pyrite that can persist for long periods in anoxic sediments. This implies that there is insufficient diagenetically reactive iron to buffer the pore water hydrogen sulfide through formation of iron sulfides at JoCo and Big Egg.

We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


2017 ◽  
Vol 188 (5) ◽  
pp. 31 ◽  
Author(s):  
Ebraheem Hatem ◽  
Nicolas Tribovillard ◽  
Olivier Averbuch ◽  
Viviane Bout-Roumazeilles ◽  
Alain Trentesaux ◽  
...  

We studied a potential petroleum source rock deposited in a clastic-dominated ramp environment: the Argiles de Châtillon Formation (Kimmeridgian-Tithonian, Boulonnais area, northern France). The formation was deposited along a proximal-distal gradient on this ramp affected by synsedimentary fault movements. A sedimentological, mineralogical and geochemical study was conducted to decipher the distribution patterns of sedimentary parameters along such a depth increase over the ramp. It comes out that smectite distribution unexpectedly mimics the lateral depth evolution despite the good floatability of the mineral. It is also observed that the Argiles de Châtillon could accumulate noticeable amounts of organic matter in spite of paleoenvironmental conditions that were not specifically prone to organic matter preservation and burial (sedimentation rate, mineral particle grain size, productivity, oxygenation level…). Conversely, reactive iron, when being present in limited abundance, must have allowed sulfide ions to react with organic molecules instead of forming iron sulfides, which fostered organic matter preservation and accumulation. This protecting role of organic sulfide incorporation (additional to other favorable factors) cannot exist if reactive iron is relatively abundant. Lastly, our results (still fragmentary) suggest that smectite minerals could carry reactive iron, which would have occasionally hampered organic-matter preservation.


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


2004 ◽  
Vol 59 (3-4) ◽  
pp. 229-232 ◽  
Author(s):  
Louisiane Faccio V. Bresciania ◽  
Rosendo Augusto Yunes ◽  
Cristiani Bürger ◽  
Luis Eduardo De Oliveira ◽  
Kauê Leal Bóf ◽  
...  

We evaluated the variation of the concentration of kaurenoic acid (1), which is a bioactive diterpene, in leaves, flowers, stems and roots from Wedelia paludosa (Acmela brasiliensis) for different seasons using the HRGC/FID method. The results indicated that the concentration of 1 is higher in the roots and stems during the autumn. The pharmacological results suggested that kaurenoic acid is responsible, at least in part, for the hypoglycemic potential detected in this plant.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Meilian Chen ◽  
Ji-Hoon Kim ◽  
Sungwook Hong ◽  
Yun Kyung Lee ◽  
Moo Hee Kang ◽  
...  

Fjords in the high Arctic, as aquatic critical zones at the interface of land-ocean continuum, are undergoing rapid changes due to glacier retreat and climate warming. Yet, little is known about the biogeochemical processes in the Arctic fjords. We measured the nutrients and the optical properties of dissolved organic matter (DOM) in both seawater and sediment pore water, along with the remote sensing data of the ocean surface, from three West Svalbard fjords. A cross-fjord comparison of fluorescence fingerprints together with downcore trends of salinity, Cl−, and PO43− revealed higher impact of terrestrial inputs (fluorescence index: ~1.2–1.5 in seawaters) and glaciofluvial runoffs (salinity: ~31.4 ± 2.4 psu in pore waters) to the southern fjord of Hornsund as compared to the northern fjords of Isfjorden and Van Mijenfjorden, tallying with heavier annual runoff to the southern fjord of Hornsund. Extremely high levels of protein-like fluorescence (up to ~4.5 RU) were observed at the partially sea ice-covered fjords in summer, in line with near-ubiquity ice-edge blooms observed in the Arctic. The results reflect an ongoing or post-phytoplankton bloom, which is also supported by the higher levels of chlorophyll a fluorescence at the ocean surface, the very high apparent oxygen utilization through the water column, and the nutrient drawdown at the ocean surface. Meanwhile, a characteristic elongated fluorescence fingerprint was observed in the fjords, presumably produced by ice-edge blooms in the Arctic ecosystems. Furthermore, alkalinity and the humic-like peaks showed a general downcore accumulation trend, which implies the production of humic-like DOM via a biological pathway also in the glaciomarine sediments from the Arctic fjords.


2021 ◽  
Vol 413 ◽  
pp. 125453
Author(s):  
Sanjeeb Mohapatra ◽  
Neha Sharma ◽  
Gayatree Mohapatra ◽  
Lokesh P. Padhye ◽  
Suparna Mukherji

Author(s):  
Joseph J. Tamborski ◽  
Meagan Eagle ◽  
Barret L. Kurylyk ◽  
Kevin D. Kroeger ◽  
Zhaoihui Aleck Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document