scholarly journals Evaluation of Various DEMs for Quantifying Soil Erosion Under Changing Land Use and Land Cover in the Himalaya

2021 ◽  
Vol 9 ◽  
Author(s):  
Shakil Ahmad Romshoo ◽  
Aazim Yousuf ◽  
Sadaff Altaf ◽  
Muzamil Amin

Soil erosion is one of the serious environmental threats in the Himalayas, primarily exacerbated by the steep slopes, active tectonics, deforestation, and land system changes. The Revised Universal Soil Loss Equation was employed to quantify soil erosion from the Vishav watershed in the Kashmir Himalaya, India. Topography and land use/land cover (LULC) are important driving factors for soil erosion. Most often, a Digital Elevation Model (DEM) is used in erosion models without any evaluation and testing which sometimes leads to erroneous estimates of soil erosion. For the best topographic characterization of the watershed, four publicly available DEMs with almost identical resolution (∼30 m), were evaluated. The DEMs were compared with GPS measurements to determine the most reliable among the tested DEMs for soil erosion estimation. Statistical evaluation of the DEMs with GPS data indicated that the CARTO DEM is better with root mean square error (RMSE) of 18.2 m than the other three tested DEMs viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), and Advanced Land Observing Satellite (ALOS). Slope length and slope steepness factors were computed from the DEMs. Crop cover and management factors were generated from the satellite-derived LULC. Moreover, rainfall data of the nearest stations were used to compute rainfall erosivity and soil erodibility factor was derived from the soil texture data generated from 375 soil samples. The simulated erosion estimates from SRTM, ALOS, and CARTO DEMs showed similar spatial patterns contrary to the ASTER estimates which showed somewhat different patterns and magnitude. The mean erosion in the study area has almost doubled from 2.3 × 106 tons in 1981 to 4.6 × 106 tons in 2019 mainly driven by the anthropogenic LULC changes. The increased soil erosion is due to the degradation of forest cover, urbanization, steep slopes, and land system changes observed during the period. In absence of the observations, the simulated soil erosion was validated with the land degradation map of the watershed which showed a good correspondence. It is hoped that the results from this work would inform policymaking on soil and water conservation measures in the data-scarce mountainous Kashmir Himalaya.

2019 ◽  
Vol 11 (24) ◽  
pp. 7053 ◽  
Author(s):  
Carina Colman ◽  
Paulo Oliveira ◽  
André Almagro ◽  
Britaldo Soares-Filho ◽  
Dulce Rodrigues

The Pantanal biome integrates the lowlands of the Upper Paraguay Basin (UPB), which is hydrologically connected to the biomes of the Cerrado and Amazon (the highlands of the UPB). The effects of recent land-cover and land-use (LCLU) changes in the highlands, combined with climate change, are still poorly understood in this region. Here, we investigate the effects of soil erosion in the Brazilian Pantanal under climate and LCLU changes by combining different scenarios of projected rainfall erosivity and land-cover management. We compute the average annual soil erosion for the baseline (2012) and projected scenarios for 2020, 2035, and 2050. For the worst scenario, we noted an increase in soil loss of up to 100% from 2012 to 2050, associated with cropland expansion in some parts of the highlands. Furthermore, for the same period, our results indicated an increase of 20 to 40% in soil loss in parts of the Pantanal biome, which was associated with farmland increase (mainly for livestock) in the lowlands. Therefore, to ensure water, food, energy, and ecosystem service security over the next decades in the whole UPB, robust and comprehensive planning measures need to be developed, especially for the most impacted areas found in our study.


2021 ◽  
Vol 13 (16) ◽  
pp. 9276
Author(s):  
Nareth Nut ◽  
Machito Mihara ◽  
Jaehak Jeong ◽  
Bunthan Ngo ◽  
Gilbert Sigua ◽  
...  

Agricultural expansion and urban development without proper soil erosion control measures have become major environmental problems in Cambodia. Due to a high population growth rate and increased economic activities, land use and land cover (LULC) changes will cause environmental disturbances, particularly soil erosion. This research aimed to estimate total amounts of soil loss using the Revised Universal Soil Loss Equation (RUSLE) model within a Geographic Information System (GIS) environment. LULC maps of Japan International Cooperation Agency (JICA) 2002 and Mekong River Commission (MRC) 2015 were used to evaluate the impact of LULC on soil erosion loss in Stung Sangkae catchment. LULC dynamics for the study periods in Stung Sangkae catchment showed that the catchment experienced a rapid conversion of forests to paddy rice fields and other croplands. The results indicated that the average soil loss from the catchment was 3.1 and 7.6 t/ha/y for the 2002 and 2015 periods, respectively. The estimated total soil loss in the 2002 and 2015 periods was 1.9 million t/y and 4.5 million t/y, respectively. The soil erosion was accelerated by steep slopes combined with the high velocity and erosivity of stormwater runoff. The spatial distribution of soil loss showed that the highest value (14.3 to 62.9 t/ha/y) was recorded in the central, southwestern and upland parts of the catchment. It is recommended that priority should be given to erosion hot spot areas, and appropriate soil and water conservation practices should be adopted to restore degraded lands.


Author(s):  
Mitiku Badasa Moisa ◽  
Daniel Assefa Negash ◽  
Biratu Bobo Merga ◽  
Dessalegn Obsi Gemeda

Abstract The impact of land-use land-cover (LULC) change on soil resources is getting global attention. Soil erosion is one of the critical environmental problems worldwide with high severity in developing countries. This study integrates the Revised Universal Soil Loss Equation model with a geographic information system to estimate the impacts of LULC conversion on the mean annual soil loss in the Temeji watershed. In this study, LULC change of Temeji watershed was assessed from 2000 to 2020 by using 2000 Landsat ETM+ and 2020 Landsat OLI/TIRS images and classified using supervised maximum likelihood classification algorithms. Results indicate that the majority of the LULC in the study area is vulnerable to soil erosion. High soil loss is observed when grassland and forest land were converted into cultivated land with a mean soil loss of 88.8 and 86.9 t/ha/year in 2020. Results revealed that about 6,608.5 ha (42.8%) and 8,391.8 ha (54.4%) were categorized under severe classes in 2000 and 2020, respectively. Accordingly, the soil loss severity class is directly correlated with the over-exploitation of forest resources and grasslands for agricultural purposes. These results can be useful for advocacy to enhance local people and stakeholder's participation toward soil and water conservation practices.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anmin Fu ◽  
Yulin Cai ◽  
Tao Sun ◽  
Feng Li

Great efforts have been made to curb soil erosion and restore the natural environment to Inner Mongolia in China. The purpose of this study is to evaluate the impact of returning farmland to the forest on soil erosion on a regional scale. Considering that rainfall erosivity also has an important impact on soil erosion, the effect of land use and land cover change (LUCC) on soil erosion was evaluated through scenario construction. Firstly, the universal soil loss equation (USLE) model was used to evaluate the actual soil erosion (2001 and 2010). Secondly, two scenarios (scenario 1 and scenario 2) were constructed by assuming that the land cover and rainfall-runoff erosivity are fixed, respectively, and soil erosion under different scenarios was estimated. Finally, the effect of LUCC on soil erosion was evaluated by comparing the soil erosion under actual situations with the hypothetical scenarios. The results show that both land use/cover change and rainfall-runoff erosivity change have significant effects on soil erosion. The land use and land cover change initiated by the ecological restoration projects have obviously reduced the soil erosion in this area. The results also reveal that the method proposed in this paper is helpful to clarify the influencing factors of soil erosion.


2020 ◽  
Author(s):  
Mitiku Badasa Moisa ◽  
Daniel Assefa Negash ◽  
Biratu Bobo Merga ◽  
Dessalegn Obsi Gemeda

Abstract BackgroundThe impact of Land Use/Land Cover (LULC) conversion on soil resources is getting global attention. Soil erosion is one the critical environmental problems worldwide with high severity in developing countries due to land degradation. This study integrates the Revised Universal Soil Loss Equation (RUSLE) model with a Geographic Information Systems (GIS) to estimate the impacts of LU/LC conversion on the mean annual soil loss in Temeji watershed. In this study, LU/LC change of Temeji watershed were assessed from 2000 to 2020 by using 2000 Landsat ETM+ and 2020 Landsat OLI/TIRS images and classified using supervised maximum likelihood classification algorithms. ResultsResults indicates that majority of the LU/LC in the study area is vulnerable to soil erosion. Our findings show that cultivated land had the highest average soil loss rate in Temeji watershed. High soil loss is observed when grass and forest land were converted into cultivated land with mean soil loss of 88.8t/ha/yr and 86.9t/ha/yr in 2020. Results revealed that about 6608.5ha (42.8%) and 8391.8ha (54.4%) were categorized under severe classes in 2000 and 2020, respectively.ConclusionsThe results can definitely support policy makers and environmental managers in implementation of soil and water conservation practices and erosion risk prevention and mitigation strategies in Temeji watershed.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


2021 ◽  
Vol 125 ◽  
pp. 107447 ◽  
Author(s):  
Rehana Rasool ◽  
Abida Fayaz ◽  
Mifta ul Shafiq ◽  
Harmeet Singh ◽  
Pervez Ahmed

Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2012 ◽  
Vol 7 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Wijitkosum

Soil erosion has been considered as the primary cause of soil degradation since soil erosion leads to the loss of topsoil and soil organic matters which are essential for the growing of plants. Land use, which relates to land cover, is one of the influential factors that affect soil erosion. In this study, impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand, were investigated by applying remote sensing technique, geographical information system (GIS) and the Universal Soil Loss Equation (USLE). The study results revealed that land use changes in terms of area size and pattern influenced the soil erosion risk in Pa Deng in the 1990&ndash;2010 period. The area with smaller land cover obviously showed the high risk of soil erosion than the larger land cover did.


2018 ◽  
Vol 192 ◽  
pp. 02017 ◽  
Author(s):  
Jatuwat Wattanasetpong ◽  
Uma Seeboonruang ◽  
Uba Sirikaew ◽  
Walter Chen

Soil loss due to surface erosion has been a global problem not just for developing countries but also for developed countries. One of the factors that have greatest impact on soil erosion is land cover. The purpose of this study is to estimate the long-term average annual soil erosion in the Lam Phra Phloeng watershed, Nakhon Ratchasima, Thailand with different source of land cover by using the Universal Soil Loss Equation (USLE) and GIS (30 m grid cells) to calculate the six erosion factors (R, K, L, S, C, and P) of USLE. Land use data are from Land Development Department (LDD) and ESA Climate Change Initiative (ESA/CCI) in 2015. The result of this study show that mean soil erosion by using land cover from ESA/CCI is less than LDD (29.16 and 64.29 ton/ha/year respectively) because soil erosion mostly occurred in the agricultural field and LDD is a local department that survey land use in Thailand thus land cover data from this department have more details than ESA/CCI.


Sign in / Sign up

Export Citation Format

Share Document