Transcription factor GATA4 regulates cardiac BCL2 gene expression in vitro and in vivo

2006 ◽  
Vol 20 (6) ◽  
pp. 800-802 ◽  
Author(s):  
Satoru Kobayashi ◽  
Troy Lackey ◽  
Yuan Huang ◽  
Egbert Bisping ◽  
William T. Pu ◽  
...  
2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2012 ◽  
Vol 303 (9) ◽  
pp. E1166-E1176 ◽  
Author(s):  
Wilfred Ip ◽  
Weijuan Shao ◽  
Yu-ting Alex Chiang ◽  
Tianru Jin

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners. As carriers of TCF7L2 type 2 diabetes risk SNPs demonstrated increased hepatic glucose production, we aimed to determine whether TCF7L2 expression is regulated by nutrient availability and whether TCF7L2 and Wnt regulate hepatic gluconeogenesis. We examined hepatic Wnt activity in the TOPGAL transgenic mouse, assessed hepatic TCF7L2 expression in mice upon feeding, determined the effect of insulin on TCF7L2 expression and β-cat Ser675 phosphorylation, and investigated the effect of Wnt activation and TCF7L2 knockdown on gluconeogenic gene expression and glucose production in hepatocytes. Wnt activity was observed in pericentral hepatocytes in the TOPGAL mouse, whereas TCF7L2 expression was detected in human and mouse hepatocytes. Insulin and feeding stimulated hepatic TCF7L2 expression in vitro and in vivo, respectively. In addition, insulin activated β-cat Ser675 phosphorylation. Wnt activation by intraperitoneal lithium injection repressed hepatic gluconeogenic gene expression in vivo, whereas lithium or Wnt-3a reduced gluconeogenic gene expression and glucose production in hepatic cells in vitro. Small interfering RNA-mediated TCF7L2 knockdown increased glucose production and gluconeogenic gene expression in cultured hepatocytes. These observations suggest that Wnt signaling and TCF7L2 are negative regulators of hepatic gluconeogenesis, and TCF7L2 is among the downstream effectors of insulin in hepatocytes.


1998 ◽  
Vol 18 (12) ◽  
pp. 7106-7118 ◽  
Author(s):  
Katherine A. Eliassen ◽  
Amy Baldwin ◽  
Eric M. Sikorski ◽  
Myra M. Hurt

ABSTRACT Expression of the highly conserved replication-dependent histone gene family increases dramatically as a cell enters the S phase of the eukaryotic cell cycle. Requirements for normal histone gene expression in vivo include an element, designated α, located within the protein-encoding sequence of nucleosomal histone genes. Mutation of 5 of 7 nucleotides of the mouse H3.2 α element to yield the sequence found in an H3.3 replication-independent variant abolishes the DNA-protein interaction in vitro and reduces expression fourfold in vivo. A yeast one-hybrid screen of a HeLa cell cDNA library identified the protein responsible for recognition of the histone H3.2 α sequence as the transcription factor Yin Yang 1 (YY1). YY1 is a ubiquitous and highly conserved transcription factor reported to be involved in both activation and repression of gene expression. Here we report that the in vitro histone α DNA-protein interaction depends on YY1 and that mutation of the nucleotides required for the in vitro histone α DNA-YY1 interaction alters the cell cycle phase-specific up-regulation of the mouse H3.2 gene in vivo. Because all mutations or deletions of the histone α sequence both abolish interactions in vitro and cause an in vivo decrease in histone gene expression, the recognition of the histone α element by YY1 is implicated in the correct temporal regulation of replication-dependent histone gene expression in vivo.


2007 ◽  
Vol 403 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Benoit R. Gauthier ◽  
Yvan Gosmain ◽  
Aline Mamin ◽  
Jacques Philippe

The transcription factor Nkx6.1 is required for the establishment of functional insulin-producing β-cells in the endocrine pancreas. Overexpression of Nkx6.1 has been shown to inhibit glucagon gene expression while favouring insulin gene activation. Down-regulation resulted in the opposite effect, suggesting that absence of Nkx6.1 favours glucagon gene expression. To understand the mechanism by which Nkx6.1 suppresses glucagon gene expression, we studied its effect on the glucagon gene promoter activity in non-islet cells using transient transfections and gel-shift analyses. In glucagonoma cells transfected with an Nkx6.1-encoding vector, the glucagon promoter activity was reduced by 65%. In BHK21 cells, Nkx6.1 inhibited by 93% Pax6-mediated activation of the glucagon promoter, whereas Cdx2/3 and Maf stimulations were unaltered. Although Nkx6.1 could interact with both the G1 and G3 element, only the former displayed specificity for Nkx6.1. Mutagenesis of the three potential AT-rich motifs within the G1 revealed that only the Pax6-binding site preferentially interacted with Nkx6.1. Chromatin immunoprecipitation confirmed interaction of Nkx6.1 with the glucagon promoter and revealed a direct competition for binding between Pax6 and Nkx6.1. A weak physical interaction between Pax6 and Nkx6.1 was detected in vitro and in vivo suggesting that Nkx6.1 predominantly inhibits glucagon gene transcription through G1-binding competition. We suggest that cell-specific expression of the glucagon gene may only proceed when Nkx6.1, in combination with Pdx1 and Pax4, are silenced in early α-cell precursors.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009039
Author(s):  
Yi Kuang ◽  
Anna Pyo ◽  
Natanel Eafergan ◽  
Brittany Cain ◽  
Lisa M. Gutzwiller ◽  
...  

Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


2019 ◽  
Author(s):  
Mohammad Saleem ◽  
Conrad P. Hodgkinson ◽  
Ela W. Contreras ◽  
Liang Xiao ◽  
Juan A. Gimenez-Bastida ◽  
...  

ABSTRACTJuxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells which give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation JG cells undergo expansion. Gene expression profiling comparing resident renal Mesenchymal Stromal Cells (MSCs) with JG cells indicate that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin producing cells. In vivo, Sox6 expression is up-regulated during JG cell expansion. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin expressing cells normally seen during JG cell expansion as well as the typical increase in renin. These results support a previously undefined role for Sox6 in renin expression during normal and pathophysiological conditions.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 14084-14084
Author(s):  
L. Lock ◽  
A. Khine ◽  
M. Huesca ◽  
V. Lawson ◽  
R. Peralta ◽  
...  

14084 Background: Lead compound LT-253 was selected from a group of 2-indolyl imidazol [4,5-d] phenanthroline derivatives with anticancer activity. It shows potent and selective anti-proliferative activity against several human cancer types in vitro, and in vivo in xenograft mouse models of human colon carcinoma (HT-29) and non-small cell lung carcinoma (H460). Methods: The mechanism of cell growth inhibition of LT-253 was investigated in HT-29 colon cancer cells using the XTT cell proliferation assay, flow cytometry and apoptosis assays. In vitro and in vivo zinc chelation was determined by competition assays using fluorescent and chromophoric chelators. Gene expression studies were performed by human genome microarray analysis and confirmed by quantitative real- time PCR. The transcription factor activity profile of LT-253-treated cells was determined by a multiplex transcription factor array and electrophoretic mobility shift assays. The functional role of specific genes was evaluated by siRNA gene knock-down. Results: LT-253 functions as chelator of zinc in vitro, and of intracellular labile zinc in HT-29 cells. Moreover, LT-253-mediated HT-29 cell growth inhibition was reversed by zinc supplementation. Gene expression profiling confirmed sustained changes in zinc-sensitive genes such as metallothionine and several zinc transporters, but not copper-sensitive or iron-sensitive genes. LT-253 induces cancer cell growth inhibition primarily through G1/S phase cell cycle arrest. Gene expression and transcription factor activities of both Egr-1 and KLF4 are induced within 4 hr post LT-253 treatment. Moreover, increased expression of both Egr-1 and KLF4 is observed in LT-253-sensitive cancer cell lines of various origins. Importantly, Egr-1 and KLF4 gene knock-down by siRNA reversed the LT-253-mediated cell growth inhibition of HT-29 cells. Conclusion: Selective chelation of intracellular labile zinc pool by LT-253 triggers immediate induction of stress-responsive tumor suppressor Egr-1 and sustained induction of zinc-responsive tumor suppressor KLF4, leading to G1/S phase cell cycle arrest and inhibition of tumor growth. No significant financial relationships to disclose.


2002 ◽  
Vol 184 (12) ◽  
pp. 3253-3259 ◽  
Author(s):  
Paul M. McNicholas ◽  
Robert P. Gunsalus

ABSTRACT Expression of the Escherichia coli napFDAGHBC operon (also known as aeg46.5), which encodes the periplasmic molybdoenzyme for nitrate reduction, is increased in response to anaerobiosis and further stimulated by the addition of nitrate or to a lesser extent by nitrite to the cell culture medium. These changes are mediated by the transcription factors Fnr and NarP, respectively. Utilizing a napF-lacZ operon fusion, we demonstrate that napF gene expression is impaired in strain defective for the molybdate-responsive ModE transcription factor. This control abrogates nitrate- or nitrite-dependent induction during anaerobiosis. Gel shift and DNase I footprinting analyses establish that ModE binds to the napF promoter with an apparent Kd of about 35 nM at a position centered at −133.5 relative to the start of napF transcription. Although the ModE binding site sequence is similar to other E. coli ModE binding sites, the location is atypical, because it is not centered near the start of transcription. Introduction of point mutations in the ModE recognition site severely reduced or abolished ModE binding in vitro and conferred a modE phenotype (i.e., loss of molybdate-responsive gene expression) in vivo. In contrast, deletion of the upstream ModE region site rendered napF expression independent of modE. These findings indicate the involvement of an additional transcription factor to help coordinate nitrate- and molybdate-dependent napF expression by the Fnr, NarP, NarL, and ModE proteins. The upstream ModE regulatory site functions to override nitrate control of napF gene expression when the essential enzyme component, molybdate, is limiting in the cell environment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 447-447
Author(s):  
Alejandro Roisman ◽  
Emmalee R. Adelman ◽  
Hsuan-Ting Huang ◽  
Dean Wade ◽  
Daniel Bilbao ◽  
...  

With aging there is a gradual decline in normal HSC function, which is accompanied by an increased risk for the development of hematological malignancies. While a lot of work has been done in mice to understand this functional decline, less is known about human HSC biology with aging. We recently reported that KLF6, a Krüpper-like transcription factor, is one of the top genes downregulated with aging in human Lin-CD34+CD38- cells, and that this downregulation correlates with loss of H3K27ac at several KLF6 upstream putative enhancer regions. Therefore, we hypothesized that age-acquired epigenetic deregulation at the KLF6 locus resulting in loss of expression may be implicated in age-related HSC dysfunction and increased risk of malignant transformation. In order to test this, we isolated CD34+ hematopoietic stem and progenitor cells (HSPCs) from healthy individuals and performed CRISPR-Cas9-based genome editing and transcriptional activation of the KLF6 locus. KLF6-deficient cells were evaluated in terms of their function by colony-forming potential, in vitro differentiation, and hematopoietic reconstitution in immunocompromised mice. Myeloid and erythroid in vitro differentiation assays in liquid culture revealed that KLF6 knock-out (KO) in healthy, young HSPC results in persistent CD34+ expression (n=5, p<0.01) and strong reduction of the CD11b, CD15 and CD33 myeloid markers (n=5, p<0.05 for all markers), and the CD71 and CD235a erythroid markers (n=5, p<0.05 for both markers), indicating that loss of KLF6 leads to a block in the differentiation programs of HSPCs. Moreover, KLF6 KO cells plated on methylcellulose exhibited an increase in the total number of colonies (n=5, p=0.02) with a strong increase in the formation of granulocyte-monocyte colonies (n=5, p=0.014) as well as an increase in erythroid burst-forming units (n=5, p=0.034), indicating increased progenitor potential in these cells. Importantly, CRISPR targeting of the nearest putative enhancer to the KLF6 locus (-25kb), which resulted in >75% downregulation of the KLF6 transcript, recapitulated the differentiation block and colony-forming phenotypes. Next, in order to define if KLF6 genomic inactivation results in an expression profile similar to that observed in healthy aged donors, we performed RNA-seq analysis. This confirmed that in young CD34+ cells both targeting KLF6 and its putative enhancer, results in gene expression signature enriched not only for our previously reported human aging HSC signature (GSEA NES=1.25 & FDR<0.01 for genes up with aging and NES=-1.17 and FDR<0.1 for genes down with aging), but also for several leukemia-associated gene signatures. Next, we sought to determine if re-expression of KLF6 in aged CD34+ cells could reverse the aging phenotype. KLF6 induction in these cells using a dCas9-VP64 fusion system led to a decrease in their myeloid differentiation potential, compared to unmanipulated and non-targeting control (NTC). This decrease in the in vitro myeloid output brought aged CD34+ cells to a behavior closer to their younger counterpart controls. Finally, to determine the impact that KLF6 inactivation may have in the hematopoietic system in vivo, we engrafted KLF6 knock-out (KO) (n=7) and NTC (n=7) cells into immunodeficient NSGS recipients. Analysis of KLF6 KO recipients revealed an increased myeloid output in peripheral blood compared to NTC (weeks 8 to 14), which was accompanied by a decrease in lymphoid output. Moreover, analysis of the bone marrow composition at week 14 showed increased frequency of CD34+CD38-CD45RA-CD90+CD49f+ HSC and CD34+CD38+ progenitor components (p=0.02, and p=0.04, respectively). In summary, our findings demonstrate that KLF6 is essential for normal in vitro and in vivo hematopoietic function, and that loss of this transcription factor recapitulates both the expression profile of aged HSC as well as several of the functional characteristics of aged hematopoiesis. These observations were further validated by the reactivation of KLF6 in aged HSPCs, which resulted in an attenuation of the aging HSPC phenotype in vitro. Finally, changes in gene expression in KLF6 KO cells indicate that it may be essential for regulation of gene expression programs involved in malignant transformation, such that age-related loss of this transcription factor may contribute to predisposition to myeloid malignancies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document