scholarly journals Study of Sexual Dimorphism in Metatarsal Bones: Geometric and Inertial Analysis of the Three-Dimensional Reconstructed Models

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaming Liu ◽  
Djorde Antonijević ◽  
Ruining Li ◽  
Yuxuan Fan ◽  
Ksenija Dukić ◽  
...  

The aim of the present paper is to determine the sex of the individual using three-dimensional geometric and inertial analyses of metatarsal bones. Metatarsals of 60 adult Chinese subjects of both sexes were scanned using Aquilion One 320 Slice CT Scanner. The three-dimensional models of the metatarsals were reconstructed, and thereafter, a novel software using the center of mass set as the origin and the three principal axes of inertia was employed for model alignment. Eight geometric and inertial variables were assessed: the bone length, bone width, bone height, surface-area-to-volume ratio, bone density, and principal moments of inertia around the x, y, and z axes. Furthermore, the discriminant functions were established using stepwise discriminant function analysis. A cross-validation procedure was performed to evaluate the discriminant accuracy of functions. The results indicated that inertial variables exhibit significant sexual dimorphism, especially principal moments of inertia around the z axis. The highest dimorphic values were found in the surface-area-to-volume ratio, principal moments of inertia around the z axis, and bone height. The accuracy rate of the discriminant functions for sex determination ranged from 88.3% to 98.3% (88.3%–98.3% cross-validated). The highest accuracy of function was established based on the third metatarsal bone. This study showed for the first time that the principal moment of inertia of the human bone may be successfully implemented for sex estimation. In conclusion, the sex of the individual can be accurately estimated using a combination of geometric and inertial variables of the metatarsal bones. The accuracy should be further confirmed in a larger sample size and be tested or independently developed for distinct population/age groups before the functions are widely applied in unidentified skeletons in forensic and bioarcheological contexts.

2016 ◽  
Vol 24 (06) ◽  
pp. 1750075 ◽  
Author(s):  
SUBHADEEP MUKHOPADHYAY

In this research paper, total 246 individual microfluidic devices have been fabricated by maskless lithography, hot embossing lithography and direct bonding technique. The effect of surface area to volume ratio on the surface-driven capillary flow of different liquids has been experimentally investigated in these microfluidic devices fabricated by polymethylmethacrylate (PMMA). Also, the individual effects of liquid viscosity and surface wettability on the surface-driven capillary flow of different liquids are experimentally investigated. The polystyrene particles of 10[Formula: see text][Formula: see text]m diameters have been separated from the aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems with 100% separation efficiency. Also, the polystyrene particles of 5[Formula: see text][Formula: see text]m diameters have been separated from a different set of aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems with 100% separation efficiency. The individual designs of the microfluidic lab-on-a-chip systems are a novel approach in this research paper. The effect of surface area to volume ratio on the separation time is experimentally investigated as another novel approach of this research paper.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 3963-3971
Author(s):  
Nurul Aqilah Pohan ◽  
Mohd Haniff Wahid ◽  
Zulkarnain Zainal ◽  
Nor Azowa Ibrahim

The preparation of graphene in three-dimensional mode represents an alternative method to maintain its characteristically large surface area, which, under normal circumstances, is diminished by the restacking of the individual sheets.


Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 44 ◽  
Author(s):  
Neil Doszpot ◽  
Michael McWilliam ◽  
Morgan Pratchett ◽  
Andrew Hoey ◽  
Will Figueira

Scleractinian corals often exhibit high levels of morphological plasticity, which is potentially important in enabling individual species to occupy benthic spaces across a wide range of environmental gradients. This study tested for differences in the three-dimensional (3D) geometry of three branching corals, Acropora nasuta, Pocillopora spp. and Stylophora pistillata among inner-, mid- and outer-shelf reefs in the central Great Barrier Reef, Australia. Important attributes of coral morphology (e.g., surface area to volume ratio) were expected to vary linearly across the shelf in accordance with marked gradients in environmental conditions, but instead, we detected non-linear trends in the colony structure of A. nasuta and Pocillopora spp. The surface area to volume ratio of both A. nasuta and Pocillopora spp. was highest at mid-shelf locations, (reflecting higher colony complexity) and was significantly lower at both inner-shelf and outer-shelf reefs. The branching structure of these corals was also far more tightly packed at inner-shelf and outer-shelf reefs, compared to mid-shelf reefs. Apparent declines in complexity and inter-branch spacing at inner and outer-shelf reefs (compared to conspecifics from mid-shelf reefs) may reflect changes driven by gradients of sedimentation and hydrodynamics. The generality and explanations of observed patterns warrant further investigation, which is very feasible using the 3D-photogrammetry techniques used in this study.


Author(s):  
Anush Konayakanahalli Chandrappa ◽  
Krishna Prapoorna Biligiri

Several countries have begun using pervious concrete (PC) pavements to reduce the adverse effects of impermeable surfaces resulting from high-impact development. Pore parameters and their relationship to other PC properties are not yet fully understood; however, this information is essential for rational designs of PC pavements. This study investigated the strength, functional, and permeability properties of 18 PC mixtures and used X-ray computed microtomography methods to determine the three-dimensional pore parameters and their relationships, which were thought to affect PC properties. The major findings of this study included the observation that the failure mode in compression was of the shear brittle type, in which the failure plane was inclined at 45° to the ground, and impact abrasion resistance was higher for larger-sized aggregates and was chiefly attributable to the individual aggregate particles debonding. Permeability was more sensitive at low hydrostatic pressure than at higher pressures. The sphericity and compactness of pores had positive correlations with each other, unlike the relationship between surface area and sphericity. The tortuosity calculated for six of the PC mixtures was less than one; this finding was attributed mainly to the single-sized pore structure. Tortuosity increased with an increase in porosity and permeability and decreased with increasing surface area and pore radius. This research should move the current understanding of PC pore structure one step forward and, therefore, will be helpful in modeling PC in a rational manner.


2020 ◽  
pp. 1-15
Author(s):  
Duncan McIlroy ◽  
Jessica Hawco ◽  
Christopher McKean ◽  
Robert Nicholls ◽  
Giovanni Pasinetti ◽  
...  

Abstract Beothukis mistakensis from the Ediacaran System of Newfoundland, Canada demonstrates complex fractal-like morphology through the development of primary-, secondary- and tertiary-order Rangea-like units. The primary-order rangeomorph units observed in B. mistakensis are tightly juxtaposed, show no evidence of being independent of one another and are made up of chamber-like secondary-order – probably mesoglea-filled – units. The growth of these rangeomorph units demonstrates that the frond developed from the tip towards the basal region through ontogeny. The tertiary-order units of Beothukis are considered to represent surface morphology on the secondary-order units. This is in contrast to palaeobiological reconstructions of Beothukis that invoke three-dimensional fractal-like branches with independent units, which has been used to infer an osmotrophic mode of life. It is considered here that the fractal-like morphology of the lower surface of B. mistakensis was an adaptation to increase surface area to volume ratio. The quilted morphology of Beothukis proposed here is consistent with a sessile, reclining, phagocytotic and/or chemosymbiotic mode of life similar to that invoked for the reclining rangeomorph Fractofusus.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Yixuan Chen ◽  
Yunzhi Liu ◽  
Parivash Moradifar ◽  
Andrew J. Glaid ◽  
Jennifer L. Russell ◽  
...  

Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Author(s):  
Mehmet Emin Simsek ◽  
Mustafa Akkaya ◽  
Safa Gursoy ◽  
Özgür Kaya ◽  
Murat Bozkurt

AbstractThis study aimed to investigate whether overhang or underhang around the tibial component that occurs during the placement of tibial baseplates was affected by different slope angles of the tibial plateau and determine the changes in the lateral and medial plateau diameters while changing the slope angle in total knee arthroplasty. Three-dimensional tibia models were reconstructed using the computed tomography scans of 120 tibial dry bones. Tibial plateau slope cuts were performed with 9, 7, 5, 3, and 0 degrees of slope angles 2-mm below the subchondral bone in the deepest point of the medial plateau. Total, lateral, and medial tibial plateau areas and overhang/underhang rates were measured at each cut level. Digital implantations of the asymmetric and symmetric tibial baseplates were made on the tibial plateau with each slope angles. Following the implantations, the slope angle that prevents overhang or underhang at the bone border and the slope angle that has more surface area was identified. A significant increase was noted in the total tibial surface area, lateral plateau surface area, and lateral anteroposterior distance, whereas the slope cut angles were changed from 9 to 0 degrees in both gender groups. It was found that the amount of posteromedial underhang and posterolateral overhang increased in both the asymmetric and symmetric tibial baseplates when the slope angle was changed from 0 to 9 degrees. Although the mediolateral diameter did not change after the proximal tibia cuts at different slope angles, the surface area and anteroposterior diameter of the lateral plateau could change, leading to increased lateral plateau area. Although prosthesis designs are highly compatible with the tibial surface area, it should be noted that the component overhangs, especially beyond the posterolateral edge, it can be prevented by changing the slope cut angle in males and females.


2010 ◽  
Vol 3 (2) ◽  
pp. 156-180 ◽  
Author(s):  
Renáta Gregová ◽  
Lívia Körtvélyessy ◽  
Július Zimmermann

Universals Archive (Universal #1926) indicates a universal tendency for sound symbolism in reference to the expression of diminutives and augmentatives. The research ( Štekauer et al. 2009 ) carried out on European languages has not proved the tendency at all. Therefore, our research was extended to cover three language families – Indo-European, Niger-Congo and Austronesian. A three-step analysis examining different aspects of phonetic symbolism was carried out on a core vocabulary of 35 lexical items. A research sample was selected out of 60 languages. The evaluative markers were analyzed according to both phonetic classification of vowels and consonants and Ultan's and Niewenhuis' conclusions on the dominance of palatal and post-alveolar consonants in diminutive markers. Finally, the data obtained in our sample languages was evaluated by means of a three-dimensional model illustrating the place of articulation of the individual segments.


2007 ◽  
Vol 3 (1) ◽  
pp. 89-113
Author(s):  
Zoltán Gillay ◽  
László Fenyvesi

There was a method developed that generates the three-dimensional model of not axisymmetric produce, based on an arbitrary number of photos. The model can serve as a basis for calculating the surface area and the volume of produce. The efficiency of the reconstruction was tested on bell peppers and artificial shapes. In case of bell peppers 3-dimensional reconstruction was created from 4 images rotated in 45° angle intervals. The surface area and the volume were estimated on the basis of the reconstructed area. Furthermore, a new and simple reference method was devised to give precise results for the surface area of bell pepper. The results show that this 3D reconstruction-based surface area and volume calculation method is suitable to determine the surface area and volume of definite bell peppers with an acceptable error.


Sign in / Sign up

Export Citation Format

Share Document