scholarly journals The Effect of Local Renin Angiotensin System in the Common Types of Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Moudhi Almutlaq ◽  
Abir Abdullah Alamro ◽  
Hassan S. Alamri ◽  
Amani Ahmed Alghamdi ◽  
Tlili Barhoumi

The Renin Angiotensin System (RAS) is a hormonal system that is responsible for blood pressure hemostasis and electrolyte balance. It is implicated in cancer hallmarks because it is expressed locally in almost all of the body’s tissues. In this review, current knowledge on the effect of local RAS in the common types of cancer such as breast, lung, liver, prostate and skin cancer is summarised. The mechanisms by which RAS components could increase or decrease cancer activity are also discussed. In addition to the former, this review explores how the administration of AT1R blockers and ACE inhibitors drugs intervene with cancer therapy and contribute to the outcomes of cancer.

Author(s):  
Kinga Jaworska ◽  
Mateusz Koper ◽  
Marcin Ufnal

Gut microbiota is a potent biological modulator of many physiological and pathological states. The renin-angiotensin system (RAS), including the local gastrointestinal RAS (GI RAS), emerges as a potential mediator of microbiota-related effects. The RAS is involved in cardiovascular system homeostasis, water-electrolyte balance, intestinal absorption, glycemic control, inflammation, carcinogenesis and aging-related processes. Ample evidence suggests a bidirectional interaction between the microbiome and RAS. On the one hand, gut bacteria and their metabolites may modulate GI and systemic RAS. On the other hand, changes in the intestinal habitat caused by alterations in RAS may shape microbiota metabolic activity and composition. Notably, the pharmacodynamic effects of the RAS-targeted therapies may be in part mediated by the intestinal RAS and changes in the microbiome. This review summarizes studies on gut microbiota and RAS physiology. Expanding the research on this topic may lay a foundation for new therapeutic paradigms in gastrointestinal diseases and multiple systemic disorders.


2010 ◽  
Vol 119 (11) ◽  
pp. 477-482 ◽  
Author(s):  
Marilia G.A.G. Pereira ◽  
Christiane Becari ◽  
José A.C. Oliveira ◽  
Maria Cristina O. Salgado ◽  
Norberto Garcia-Cairasco ◽  
...  

The RAS (renin–angiotensin system) is classically involved in BP (blood pressure) regulation and water–electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1–3% of the world's population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT1 receptor (angiotensin II type 1 receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT1 receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.


1969 ◽  
Vol 173 (1032) ◽  
pp. 317-325 ◽  

An outline of the development of knowledge of the renin-angiotensin system is given, and the nature of the enzyme renin, its site within the kidney as well as in other organs, and its action on plasma substrate to form first the decapeptide which is converted to the biologically active octapeptide, are considered. The methods of measurement of renin and angiotensin in body fluids are discussed and the factors causing increased or decreased secretion of renin into the blood stream related to physiological and pathological situations. The role of angiotensin as a pressor agent, vasoconstrictor and stimulator of aldosterone production is assessed in the light of current knowledge.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6945
Author(s):  
George El-Arif ◽  
Antonella Farhat ◽  
Shaymaa Khazaal ◽  
Cédric Annweiler ◽  
Hervé Kovacic ◽  
...  

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was first identified in Eastern Asia (Wuhan, China) in December 2019. The virus then spread to Europe and across all continents where it has led to higher mortality and morbidity, and was declared as a pandemic by the World Health Organization (WHO) in March 2020. Recently, different vaccines have been produced and seem to be more or less effective in protecting from COVID-19. The renin–angiotensin system (RAS), an essential enzymatic cascade involved in maintaining blood pressure and electrolyte balance, is involved in the pathogenicity of COVID-19, since the angiotensin-converting enzyme II (ACE2) acts as the cellular receptor for SARS-CoV-2 in many human tissues and organs. In fact, the viral entrance promotes a downregulation of ACE2 followed by RAS balance dysregulation and an overactivation of the angiotensin II (Ang II)–angiotensin II type I receptor (AT1R) axis, which is characterized by a strong vasoconstriction and the induction of the profibrotic, proapoptotic and proinflammatory signalizations in the lungs and other organs. This mechanism features a massive cytokine storm, hypercoagulation, an acute respiratory distress syndrome (ARDS) and subsequent multiple organ damage. While all individuals are vulnerable to SARS-CoV-2, the disease outcome and severity differ among people and countries and depend on a dual interaction between the virus and the affected host. Many studies have already pointed out the importance of host genetic polymorphisms (especially in the RAS) as well as other related factors such age, gender, lifestyle and habits and underlying pathologies or comorbidities (diabetes and cardiovascular diseases) that could render individuals at higher risk of infection and pathogenicity. In this review, we explore the correlation between all these risk factors as well as how and why they could account for severe post-COVID-19 complications.


2019 ◽  
Vol 32 (12) ◽  
pp. 1133-1142 ◽  
Author(s):  
Daniela Medina ◽  
Amy C Arnold

Abstract Despite decades of research and numerous treatment approaches, hypertension and cardiovascular disease remain leading global public health problems. A major contributor to regulation of blood pressure, and the development of hypertension, is the renin-angiotensin system. Of particular concern, uncontrolled activation of angiotensin II contributes to hypertension and associated cardiovascular risk, with antihypertensive therapies currently available to block the formation and deleterious actions of this hormone. More recently, angiotensin-(1–7) has emerged as a biologically active intermediate of the vasodilatory arm of the renin-angiotensin system. This hormone antagonizes angiotensin II actions as well as offers antihypertensive, antihypertrophic, antiatherogenic, antiarrhythmogenic, antifibrotic and antithrombotic properties. Angiotensin-(1–7) elicits beneficial cardiovascular actions through mas G protein-coupled receptors, which are found in numerous tissues pivotal to control of blood pressure including the brain, heart, kidneys, and vasculature. Despite accumulating evidence for favorable effects of angiotensin-(1–7) in animal models, there is a paucity of clinical studies and pharmacokinetic limitations, thus limiting the development of therapeutic agents to better understand cardiovascular actions of this vasodilatory peptide hormone in humans. This review highlights current knowledge on the role of angiotensin-(1–7) in cardiovascular control, with an emphasis on significant animal, human, and therapeutic research efforts.


1993 ◽  
Vol 139 (2) ◽  
pp. 281-285 ◽  
Author(s):  
Y. Takei ◽  
Y. Hasegawa ◽  
T. X. Watanabe ◽  
K. Nakajima ◽  
N. Hazon

ABSTRACT It is believed that the renin-angiotensin system evolved initially in primitive bony fishes and is absent from elasmobranchs. We have isolated angiotensin I from the incubates of plasma and kidney extracts of an elasmobranch fish, Triakis scyllia, using eel vasopressor activity as an assay system. Its sequence was determined to be H-Asn-Arg-Pro-Tyr-Ile-His-ProPhe-Gln-Leu-OH. Dogfish angiotensin I is teleost-like because of an asparagine residue at position 1 but it is mammalian-like because of an isoleucine residue at position 5. The unique and most important substitution in dogfish angiotensin I is a proline residue at position 3 which may cause significant changes in its tertiary structure. A glutamine residue at position 9 is also unique among all angiotensin Is sequenced to date. Dogfish angiotensin I is more potent than rat angiotensin I in its vasopressor activity in the dogfish but the relationship is reversed in the rat. Thus angiotensin receptors as well as the hormone molecules appear to have evolved during vertebrate phylogeny. Our findings establish the elasmobranch renin-angiotensin system and support the hypothesis that the renin-angiotensin system is a phylogenetically old hormonal system which plays important roles in cardiovascular and fluid homeostasis. Journal of Endocrinology (1993) 139, 281–285


2018 ◽  
Vol 98 (1) ◽  
pp. 505-553 ◽  
Author(s):  
Robson Augusto Souza Santos ◽  
Walkyria Oliveira Sampaio ◽  
Andreia C. Alzamora ◽  
Daisy Motta-Santos ◽  
Natalia Alenina ◽  
...  

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1–7)/MAS, whose end point is the metabolite ANG-(1–7). ACE2 and other enzymes can form ANG-(1–7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1–7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1–7) in physiology and disease, with particular emphasis on the brain.


1992 ◽  
Vol 4 (2) ◽  
pp. 59-71 ◽  
Author(s):  
F Broughton Pipkin

Given the phylogenic antiquity of the renin angiotensin system (RAS) and the high degree of renin gene sequence conservation between species, it is perhaps not surprising that the RAS should be central to cardiovascular homeostasis. Nor, given the common embryological origin of the kidneys and reproductive tracts, is it especially surprising that the system should be influenced by, and may itself influence, the state of pregnancy. In this review I shall attempt to give an outline of the workings of the system in normal and in hypertensive pregnancy. The RAS is now known to be involved in spheres far beyond the ‘simple’ control of sodium and water homeostasis, and hence of blood pressure. Its roles in reproduction and in fetal life in animals have been very recently reviewed; this review will therefore confine itself to human studies unless otherwise stated.


2012 ◽  
Vol 123 (5) ◽  
pp. 273-284 ◽  
Author(s):  
Rajesh Kumar ◽  
Candice M. Thomas ◽  
Qian Chen Yong ◽  
Wen Chen ◽  
Kenneth M. Baker

The RAS (renin–angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
B. Klop ◽  
T. M. van den Berg ◽  
A. P. Rietveld ◽  
J. Chaves ◽  
J. T. Real ◽  
...  

Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG) metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R) gene on postprandial lipemia.Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined.Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele (9.39±8.36 mM*h/L) compared to homozygous carriers of the 1166-A allele (2.02±6.20 mM*h/L) (P<0.05). Postprandial lipemia was similar for the different C573T polymorphisms.Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism.


Sign in / Sign up

Export Citation Format

Share Document