scholarly journals Thermodynamic Evaluation of Equilibrium Oxygen Composition of UO2-Mo Nuclear Fuel Pellet Under High Temperature Steam

2021 ◽  
Vol 9 ◽  
Author(s):  
Jae Ho Yang ◽  
Kun Woo Song ◽  
Dong Seok Kim ◽  
Dong-Joo Kim ◽  
Heung Soo Lee ◽  
...  

Micro-plate or microcell UO2–Mo is considered a promising accident tolerant fuel candidate for water-cooled power reactors. In this work, we evaluated the anticipated oxidation behavior of a UO2–Mo system under high-temperature steam to understand the impact of Mo oxidation on the fuel degradation mechanism in the event of steam ingress through cracks in the cladding. The equilibrium oxygen compositions of UO2 and Mo in various steam atmospheres relevant to reactor operating conditions were predicted using thermodynamic calculations and then compared with previous results. The oxidation behavior of UO2–Mo pellets was discussed through thermodynamic calculations and in terms of kinetic parameters such as oxygen diffusion, fuel temperature profile, and pellet microstructure. Mo oxidation was found to have an insignificant effect on pellet integrity in a cladding leakage scenario under normal reactor operating conditions.

2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2018 ◽  
Vol 135 ◽  
pp. 87-98 ◽  
Author(s):  
Chongchong Tang ◽  
Martin Steinbrueck ◽  
Michael Stueber ◽  
Mirco Grosse ◽  
Xiaojuan Yu ◽  
...  

Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 521
Author(s):  
Jingjing Li ◽  
Haidong Ma ◽  
Yungang Wang ◽  
Min Xue ◽  
Qinxin Zhao

Oxidation behavior of Super304H and HR3C steel in high temperature steam from an ultra-supercritical coal-fired boiler was investigated in this paper. The results showed that the steam oxidized surface of Super304H ware composed of Fe2O3, Cr2O3 and FeCr2O4, the oxide scale had a thickness of 50–70 μm. In addition, the steam oxidized surface of HR3C ware composed of Fe2O3, the oxide scale was about 20μm in thickness and contained few pitting. The oxidation product layer of the two samples could be divided into two layers, including outer layer enriched O element and Fe element, and inner layer enriched O element and Cr element. Furthermore, oxide scale spalling was observed on the surface of Super304H sample.


2020 ◽  
Vol 174 ◽  
pp. 108826 ◽  
Author(s):  
Xiaochun Han ◽  
Chen Chen ◽  
Yongqiang Tan ◽  
Wanlin Feng ◽  
Shuming Peng ◽  
...  

2021 ◽  
Vol 179 ◽  
pp. 109114
Author(s):  
Amanda Leong ◽  
Qiufeng Yang ◽  
Samuel W. McAlpine ◽  
Michael P. Short ◽  
Jinsuo Zhang

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1509
Author(s):  
Guangbin Li ◽  
Yanhong Liu ◽  
Yingchun Zhang ◽  
Huailin Li ◽  
Xiaojing Wang ◽  
...  

A dense and uniform Cr coating was fabricated on the zirconium alloys fuel claddings by radio frequency (RF) magnetron sputtering to improve the mechanical and anti-oxidation properties under 1200 °C steam environment. The phase composition and the micro and macro morphologies of the specimens were investigated by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and optical-microtopography (OM) analyses, and the high-temperature oxidation behavior was evaluated at 1200 °C steam environment for 3000 s. In this paper, there exists a positive correlation between thickness and Vickers hardness (HV), and a negative correlation between surface roughness and bonding force. Radial tensile was introduced to investigate the deformation-resistant performance, and the displacement of the Cr-coated specimen was as low as 2.32 mm, which was much lower than the uncoated zircaloy cladding (3.05 mm). Different thicknesses of Cr coatings were deposited to investigate the oxidation degrees of zircaloy cladding under a high-temperature steam environment. The optimal 6 μm Cr-coated zirconium alloys cladding exhibited an excellent anti-oxidation property, and the weight gain was as low as ~4.12 mg/cm2, which was almost one-third of the uncoated specimen.


2019 ◽  
pp. 48-54
Author(s):  
Ben Nengjun ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


Sign in / Sign up

Export Citation Format

Share Document