scholarly journals The Ring RPT Method for DH Systems Containing Dispersed Particle-Type of Fuel and Burnable Poisons

2021 ◽  
Vol 9 ◽  
Author(s):  
Lei Lou ◽  
Xingjie Peng ◽  
Xiaoming Chai ◽  
Dong Yao ◽  
Mancang Li ◽  
...  

Because dispersed particle-type fuel and burnable poisons both have double heterogeneity (DH), using the traditional volumetric homogenization method (VHM) to treat DH systems will bring about large reactivity calculation deviation. The improved reactivity-equivalent physical transformation (IRPT) method can be applied to DH systems which have both dispersed particle-type fuel and burnable poisons because of the features of simplicity and high calculation accuracy. In this article, the calculations show that the IRPT method becomes invalid for some DH systems when the volume fraction of dispersed particle-type burnable poisons is relatively high or the absorb cross section of burnable poison particles is relatively large. Then the two-step ring reactivity-equivalent physical transformation (TRRPT) method is proposed to be applied to the DH systems with both dispersed particle-type fuel and burnable poisons. Results of reactivity at zero burnup and depletion calculations for different types of dispersed particle-type fuel and burnable poisons and the comparison with Monte Carlo results of grain models prove the validity of the TRRPT method, and it has been proven that the TRRPT method has higher accuracy in reactivity calculation and a wider scope of transformation than the IRPT method.

Author(s):  
Lei Lou ◽  
Xiaoming Chai ◽  
Dong Yao ◽  
Xingjie Peng ◽  
Mancang Li ◽  
...  

Abstract In this paper it was found that for DH systems containing both particle-dispersed fuel and particle-dispersed burnable poison, the TRRPT method may be invalid in some situation. In his paper a new method named Hybrid RPT (HRPT) method has been proposed for DH systems containing both particle-dispersed fuel and particle-dispersed burnable poisons. And then the HRPT are analyzed and studied on the equivalent transformation range of DH systems comparing with the TRRPT method and the IRPT method. It was found that the HRPT method not only has a wider equivalent transformation range of DH systems than the TRRPT method, but also has higher calculation accuracy than the IRPT method. Results of depletion calculations for different types, different volume fractions and different particle sizes of burnable poisons particles dispersed the DH systems with dispersed particle-type fuel and the comparison with Monte Carlo results of grain models have proved the effectiveness and applicability of HRPT method.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


Author(s):  
Tien-Chih Lin ◽  
Nikhil Gupta

Hollow particle (microballoon) filled polymeric composites, called syntactic foams, are tested for impact properties in the present work. Izod type pendulum impact testing is carried out on eight types of foams, which are made of four types of microballoons used in volume fractions of 0.5 and 0.6. Variation in the volume fraction of microballoons leads to a difference in the total energy absorbed during fracture of different types of foams. Results show that syntactic foams containing microballoons of lower density show lower impact strength because of the lower strength of these microballoons. An increase in microballoon volume fraction leads to decreased energy absorption and strength.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1543
Author(s):  
Luka Sturtewagen ◽  
Erik van der Linden

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.


Sign in / Sign up

Export Citation Format

Share Document