scholarly journals Characteristics of the Waviness End-Face Mechanical Seal in Reactor Coolant Pump Considering the Viscosity-Temperature Effect

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Ma ◽  
Ya-Hui Wang ◽  
Hai-Chun Zhou ◽  
Wen-Tao Su

Mechanical seals prevents flow leakages in reactor coolant pumps thus playing an important role in their operational safety. However, their operational performance depends on different parameters, the seal geometrical design and the sealing medium characteristics among others. This study investigates the main performances of the waviness end-face mechanical seal, considering the effect of fluid flow and thermal characteristics. The involved coupled thermal-hydraulic process is simulated using the OpenFOAM, based on the coupled Navier-Stokes and energy balance equations. Study results showed that the viscosity-temperature effect may increase the flow leakage, and decrease both the opening force and the liquid film stiffness. The later may be decreased to negative values under specific conditions. It’s therefore generally found that visco-thermal characteristics of the sealing medium may negatively affect mechanical seal’s operational stability. On the other hand, from the perspective of liquid film temperature rise, the visco-thermal effect may lead to the regulation of the temperature rise in the liquid film, which improves the mechanical seal’s operational safety in some aspects. Through a comprehensive analysis, the optimal structural parameters of the waviness mechanical seal investigated in this study are found to be hi = 2.5μm, β = 900μrad (Rd-Ri)/(Ro-Ri) = 0.2, α = 0.8, and k = 9.

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1611
Author(s):  
Xiaodong Feng ◽  
Wentao Su ◽  
Yu Ma ◽  
Lei Wang ◽  
Heping Tan

Based on the fluid hydrodynamic lubrication theory, a mathematical model of liquid film lubrication was established for the waviness hydrodynamic mechanical seal of a reactor coolant pump. The influences of the waviness amplitude and pressure on the sealing performance were investigated by the numerical simulation. The numerical results showed that the leakage rate increases linearly as the pressure and waviness amplitude increase under the force balance condition. The minimum liquid film thickness decreases first and then increase as the pressure increases. Stationary slide rings with three different waviness amplitudes were processed using the pre-deformation method and tested at different pressure and temperature. The experiments showed that all the three kinds of seal have good stability under different pressure conditions. The experimental results showed that the leakage rate is influenced by the pressure, waviness amplitude, and temperature, and the leakage rate increases as the pressure increases. The comparison between experimental and numerical results showed that both the temperature and pressure affect the seal performance, and tends to a smaller leakage rate, which is quite different from the numerical values. Therefore, the multi-physics coupling effect should be considered in the numerical analysis of seal performance, and this will be studied in the further works.


2020 ◽  
Vol 166 ◽  
pp. 210-221
Author(s):  
Wen-Tao Su ◽  
Yang Li ◽  
Ya-Hui Wang ◽  
Ya-Ning Zhang ◽  
Xiao-Bin Li ◽  
...  

Author(s):  
K.-W. Park ◽  
J.-H. Bae ◽  
S.-H. Park

The reactor vessel internals (RVI) of a pressurized water reactor (PWR) must be installed precisely in the reactor vessel (RV) according to the requirements for levelness, orientation and vertical alignments for its proper functions and structural integrity. For the precise installation, deformation of the RV should be controlled during the RVI installation. Traditionally, the RVI has been installed in the RV after the completion of welding work for large bore pipings in the reactor coolant system (RCS). To reduce installation time, the concurrent installation of the RVI and RCS pipings is investigated. This paper describes the feasibility study on the concurrent installation including the Finite Element Method (FEM) analyses of the RV deformation due to the welding and heat treatment of the pipings. Based on the feasibility study results, the optimum schedule of the RVI installation in parallel with the installation of the cross-over leg pipings (reactor coolant pump inlet pipings) and confirmation measurement locations are developed. Thereby the concurrent installation will be applied to the nuclear power plants under construction in Korea, and it is expected to reduce installation period of 2 months compared to the traditional sequential installation method.


2020 ◽  
pp. 47-55
Author(s):  
S. Shevchenko ◽  
O. Shevchenko

The paper presents the analysis of existing designs of NPP reactor coolant pumps (RCP) rotor sealing systems. The most common design solutions of sealing units that provide the necessary tightness, reliability and service life under high pressure, temperature and sliding speeds typical for RCP, as well as trends for their improvement to increase tightness and environmental safety of activities were identified. Designs of impulse seals with a self-adjusting clearance are presented as the most promising assemblies for sealing pump shafts with high parameters. A computer model of impulse mechanical seal as an automatic control system is proposed. A framework for calculating impulse mechanical seals has been developed, allowing the choice of their main geometric parameters to ensure the optimal value of the mechanical clearance and the friction moment on the sealing contact surfaces. Expressions are obtained for constructing the static and flow characteristics of a impulse mechanical seal, the condition for its dynamic stability is determined. The paper presents the shaft sealing system of RCP, main nodes of which are several stages of impulse mechanical seals with a self-regulating clearance.


2012 ◽  
Vol 433-440 ◽  
pp. 544-551
Author(s):  
Wu Zhao ◽  
Gui Yu

In this study, liquid film perturbed pressure equation is derived firstly using a Taylor Series expanding pressure formula. By linear film assumption, the axial stiffness and damping coefficients of the mechanical seal are derived. Then kinematical equation of the rotating shaft-mechanical seal system is established. The research focus on solving response of the rotating shaft-mechanical seal system and leakage of the mechanical seal when the rotating shaft is under different frequencies excitatied or under frequency disturbed in different form excitatied in this paper. The analytical results show that response of the rotating shaft-mechanical seal system can finally be close to the stable state, when excitatied frequency of the rotating shaft is disturbed in different form. But for amplitude of the displace between the stationary ring, rotating ring and rotating shaft occurs mutation point at the time when the excitatied frequency is disturbed, meanwhile the excitatied frequency of the rotating shaft is disturbed in rectangular pulse form or in instant maximum pulse form. It will cause liquid film thickness to happen mutation until the leakage increases and mechanical seal fails at last. The study results show that the sealing performance of mechanical seal and excitatied frequency of the rotating shaft has closely positive correlation. The rotating shaft-mechanical seal system can be optimization design and performance prediction based on the study of this paper.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Rui Xu ◽  
Yun Long ◽  
Yaoyu Hu ◽  
Junlian Yin ◽  
Dezhong Wang

Reactor coolant pump (RCP) is one of the most important equipment of the coolant loop in a pressurized water reactor system. Its safety relies on the characteristics of the rotordynamic system. For a canned motor RCP, the liquid coolant fills up the clearance between the metal shields of the rotor and stator inside the canned motor, forming a long clearance flow. The fluid-induced forces of the clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally analyzed in this work. A transient computational fluid dynamics (CFD) method has been used to investigate the fluid-induced force of the clearance. A vertical experiment rig has also been established for the purpose of measuring the fluid-induced forces. Fluid-induced forces of clearance flow with various whirl frequencies and various boundary conditions are obtained through the CFD method and the experiment. Results show that clearance flow brings large mass coefficient into the rotordynamic system and the direct stiffness coefficient is negative under the normal operating condition. The rotordynamic stability of canned motor RCP does not deteriorate despite the existence of significant cross-coupled stiffness coefficient from the fluid-induced forces of the clearance flow.


Sign in / Sign up

Export Citation Format

Share Document