scholarly journals In-Situ FTIR Study of Heterogeneous Oxidation of SOA Tracers by Ozone

2021 ◽  
Vol 2 ◽  
Author(s):  
Runhua Wang ◽  
Yajuan Huang ◽  
Qian Hu ◽  
Gang Cao ◽  
Rongshu Zhu

Secondary organic aerosols (SOA) play an important role in global climate change and air quality, and SOA tracers can directly characterize the source and reaction mechanism of SOA. However, it is not well known that whether the tracers can be oxidized or how the instability of the tracers in the atmosphere. In this paper, in-situ FTIR was used to analyze the chemical structure changes of erythritol, analogue of 2-methyl erythritol (AME) that is, a tracer of isoprene SOA, and 2, 3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of toluene SOA, when exposed to high concentration of ozone for short periods. Under the condition of 20 ppm ozone exposure for 30 min, the change rate of absorption area of AME at 3,480 and 1700 cm−1 was −0.0134 and 0.00117 int.abs/s, respectively, and the change rate of the absorption area of DHOPA at 1,640 and 3340cm−1 was −0.00191 and 0.00218 int.abs/s, respectively. The pseudo-first-order reaction rate constant kapp were 1.89 × 10−8 and 2.12 × 10−7 s−1, and the uptake coefficients of ozone on the surface of AME and DHOPA were (1.3 ± 0.8) × 10−8 and (4.5 ± 2.7) × 10−8, respectively. These results showed the oxidation processes of AME and DHOPA were slow in the presence of high concentrations of ozone, which implied that AME and DHOPA could be considered to be stable in the atmospheric environment with ozone as the main oxidant.

2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2007 ◽  
Vol 22 (2) ◽  
pp. 428-436 ◽  
Author(s):  
S. Jayalakshmi ◽  
J.P. Ahn ◽  
K.B. Kim ◽  
E. Fleury

We report the hydrogenation characteristics and mechanical properties of Ti50Zr25Cu25 in situ composite ribbons, composed of β-Ti crystalline phase dispersed in an amorphous matrix. Upon cathodic charging at room temperature, high hydrogen absorption up to ∼60 at.% (H/M = ∼1.2) is obtained. At such a high concentration, hydrogen-induced amorphization occurs. Mechanical tests conducted on the composite with varying hydrogen concentrations indicate that the Ti50Zr25Cu25 alloy is significantly resistant to hydrogen embrittlement when compared to conventional amorphous alloys. A possible mechanism that would contribute toward hydrogen-induced amorphization and hydrogen embrittlement is discussed.


2021 ◽  
Author(s):  
Grigory Artemiev ◽  
Alexey Safonov ◽  
Nadezhda Popova

<p>Uranium migration in the oxidized environment of near-surface groundwater is a typical problem of many radiochemical, ore mining and ore processing enterprises that have sludge storage facilities on their territory. Uranium migration, as a rule, occurs against a high salt background due to the composition of the sludge: primarily, nitrate and sulfate anions and calcium cations. One of the ways to prevent the uranium pollution is geochemical or engineering barriers. For uranium immobilization, it is necessary to create conditions for its reduction to a slightly soluble form of uraninite and further mineralization, for example, in the phosphate form. An important factor contributing to the rapid reduction of uranium is a in the redox potential decreasing and the removal of nitrate ions, which can be achieved through the activation of microflora. It should be added that phosphate itself is one of the essential elements for the development of microflora. This work was carried out in relation to the upper aquifer (7-12 m) near the sludge storage facilities of ChMZ, which is engaged in uranium processing and enrichment. One of the problems of this aquifer, in addition to the high concentration of nitrate ions (up to 15 g / l), is the high velocity of formation waters.<br>In laboratory conditions, the compositions of injection solutions were selected containing sources of organic matter to stimulate the microbiota development and phosphates for uranium mineralization. When developing the injection composition, special attention was paid to assessing the formation of calcite deposits in aquifer conditions to partially reduce the filtration parameters of the horizon and reduce the rate of movement of formation waters. This must be achieved to ensure the possibility of long-term deposition of uranium and removal of nitrate. The composition of the optimal solution was selected and in a series of model experiments the mineral phases containing the lowest hydrated form of the uranium-containing phosphate mineral meta-otenite were obtained.<br>In situ mineral phosphate barrier Formation field tests were carried out in water horizon conditions in a volume of 100m3 by injection of an organic and phosphates mixture. As a result, at the first stage of field work, a significant decreasing nitrate ion concentration, and reducing conditions formation coupled with the dissolved uranium concentration of decreasing were noted.</p>


2015 ◽  
Vol 12 (3) ◽  
pp. 697-712 ◽  
Author(s):  
P. Carrillo ◽  
J. M. Medina-Sánchez ◽  
C. Durán ◽  
G. Herrera ◽  
V. E. Villafañe ◽  
...  

Abstract. An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280–400 nm) and photosynthetically active radiation (PAR, 400–700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton–bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton–bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio < 100). This did not occur in the low-UVR lake (i.e., BCD : EOC(%) ratio > 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.


2005 ◽  
Vol 61 (5) ◽  
pp. 835-843 ◽  
Author(s):  
Hiroshi Ishida ◽  
Yuji Watanabe ◽  
Tatsuo Fukuhara ◽  
Sho Kaneko ◽  
Kazushi Furusawa ◽  
...  

2014 ◽  
Vol 8 ◽  
pp. 105-112
Author(s):  
HM Zakir Hossain ◽  
Md Sultan-Ul-Islam ◽  
Quazi Hasna Hossain

In the present experiment, concentration, distribution and sources of penta-aromatic hydrocarbons in seven drill core and outcrop samples from Jaintia and Barail Group mudstones, northeastern Bengal Basin, Bangladesh have been studied. Gas chromatography-mass spectrometry (GC-MS) was used to obtain composition details about the sedimentary organic matter (OM). Mudstone samples were found to contain relatively high penta-aromatic hydrocarbon abundances in the lower Jaintia Group than in the overlying Barail Group. High concentration of perylene suggests terrigenous sources and significantly higher content of total organic carbon in the samples. A biogenic origin of perylene therefore indicates oxygen deficient environmental condition for deposition of OM. Perylene over pentacyclic aromatic hydrocarbon isomers regulating in-situ diagenetic origin. DOI: http://dx.doi.org/10.3329/jles.v8i0.20154 J. Life Earth Sci., Vol. 8: 105-112, 2013


2012 ◽  
Vol 608-609 ◽  
pp. 1337-1341
Author(s):  
Hong Liang Chen ◽  
Ji Song Yang ◽  
Yan Wang ◽  
Hui Ying Li ◽  
Xin Xin Li ◽  
...  

Silicalite-1 membranes were successfully synthesized on α-Al2O3 tubes by in-situ hydrothermal synthesis after filling the tubes with water and glycerol mixtures, and all the membranes show high concentration performance towards ethanol/water mixtures after pretreating tubes with different NaOH solution. The results show that the flux enhances with the enhancement of NaOH solution concentration, but the separation selectivity decreases with the enhancement of NaOH solution concentration. After pretreating the α-Al2O3 tubes with different NaOH solution, the weight of all the α-Al2O3 tube decreases, but the Si/Al ratio increases, which shows that suitable pretreatment of α-Al2O3 is useful for improving the hydrophobicity of silicalite-1 membranes.


2003 ◽  
Vol 3 (2) ◽  
pp. 1843-1891
Author(s):  
S. Kutsuna ◽  
L. Chen ◽  
O. Ohno ◽  
N. Negishi ◽  
K. Takeuchi ◽  
...  

Abstract. Methyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313 K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, a parameter of the general BET equation, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption constants of CH3CC3 and CH2=CCl2, and a surface reaction rate constant were determined for an illite sample. The k1 value increased with increasing temperature. The amount of CH3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in dry air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH3CC3 on the ground surface in arid regions is worth taking into consideration when inferring the tropospheric lifetime of CH3CC3 and global OH concentration from the global budget concentration of CH3CCl3.


2018 ◽  
Author(s):  
Shuming Jia ◽  
Zhengshi Wang ◽  
Shumin Li

Abstract. Drifting snow, a common two-phase flow movement in high and cold areas, contributes greatly to the mass and energy balance of glacier and ice sheets and further affects the global climate system. Mid-air collisions occur frequently in high-concentration snow flows; however, this mechanism is rarely considered in current models of drifting snow. In this work, a three-dimensional model of drifting snow with consideration of inter-particle collisions is established; this model enables the investigation of the role of a mid-air collision mechanism in openly drifting snow. It is found that the particle collision frequency increases with the particle concentration and friction velocity, and the blown snow with a mid-air collision effect produces more realistic transport fluxes since inter-particle collision can enhance the particle activity under the same condition. However, the snow saltation mass flux basically shows a cubic dependency with friction velocity, which distinguishes it from the quadratic dependence of blown sand movement. Moreover, the snow saltation flux is found to be largely sensitive to the particle size distribution since the suspension snow may restrain the saltation movement. This research could improve our understanding of the role of the mid-air collision mechanism in natural drifting snow.


2015 ◽  
pp. 20-25
Author(s):  
Asep Saefumullah ◽  
Ratsania Rahmaniati H

High concentration of phosphates in the water can lead to eutrophication which leads to uncontrolled growth of algae (algae blooming). It underlies the need for determining the concentration of phosphate in the aquatic environment. However, the concentration of phosphate may change during storage of samples so that an accurate analysis difficult to achieve unless carried out in-situ. DGT (Diffusive Gradient in Thin Films) is an in-situ measurement method developed for measuring phosphate and metal. In this study the use of Fe-Al-Oxide as a binding gel that is expected to bind phosphate with a capacity greater than ferrihydrite. N, N'-methylenebisacrylamide is used as a substitute for commercial DGT Crosslinker as crosslinking for a cheaper price and selective for small molecule. Ferrihydrite-DGT and Fe-Al-Oxide-DGT are tested with a variety of concentrations, pH, and contact time. In both methods DGT found that the pH for phosphate measurements performed at pH 3. Capacity of Fe-Al-Oxide binding gel known to be higher than the ferrihydrite binding gel with result Cferrihydrite-DGT:Cstart is 76% and CFe-Al-Oxide-DGT:Cstart is 82%.DOI :http://dx.doi.org/10.15408/jkv.v0i0.3597


Sign in / Sign up

Export Citation Format

Share Document