scholarly journals Hydrological Modeling for Multifunctional Landscape Planning in the Orinoquia Region of Colombia

2021 ◽  
Vol 9 ◽  
Author(s):  
Jonathan Nogales Pimentel ◽  
Carlos Andres Rogéliz Prada ◽  
Thomas Walschburger

With over 200,000 km2 of natural savannas, the Orinoquia region of Colombia is a key and strategic conservation area. Because of Colombia’s fast economic growth, there are significant plans for agro-industrial expansion in the Orinoquia. This expansion may seriously affect water availability. To evaluate the cumulative impacts on freshwater ecosystems derived by different expansion scenarios, the use of a comprehensive framework for mathematical modeling, able to represent the hydrological processes at a macro-basin scale, is crucial for analysis and as a tool to bridge the gap between science and practice. In this work, we developed a general methodological framework for hydrological analysis at macro-basin scale consisting of four main stages: 1) collection and processing of hydro-climatological data, 2) characterization of hydro dependent water use sectors, 3) mathematical modeling and 4) scenario simulation. As a result of applying the proposed framework, we obtained a coupled hydrological model, which allows us to represent the rain-runoff process, the river-floodplain interaction and anthropic processes such as surface water extraction and groundwater extraction, enabling us to represent the complexity of the Orinoquia region. The model was successfully implemented in Matlab showing a Nash-Sutcliffe efficiency coefficient between 0.62 and 0.92 in calibration and between 0.49 and 0.92 in validation. With this model we analyzed five different agro-industrial expansion scenarios, finding that the Colombian Orinoquia may have future high pressure on water resource areas with critical changes in the water availability regime. The scenarios show reductions of up to 85% in low water flows in more than 50% of the area of the Colombian Orinoco basin. In the most extreme scenarios, the Meta, Vichada and Guaviare rivers show reductions of 95, 98 and 50% in low water flows. The results show an urgent need to consider hydrology in planning processes to ensure the sustainability of this important area in Colombia.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2021 ◽  
Vol 13 (4) ◽  
pp. 1775
Author(s):  
Cesar Freddy Suárez ◽  
Monica Paez-Vasquez ◽  
Fernando Trujillo ◽  
Jose Saulo Usma ◽  
Michele Thieme ◽  
...  

The Orinoco river basin is the third largest river in the world by volume. Its catchment encompasses 27 major sub-basins including the Bita with a catchment area of about 825,000 ha, which originates in the Colombian high plains in the Llanos ecoregion. It has been recognized as a priority area for conservation through different gap analyses and overall determined to have good health according to the Orinoco report card 2016. The natural climate and hydrologic processes, and their synergies with flooded forests, savannas, wetlands, species diversity and local economic activities, are part of a dynamic and sensitive system. With the purpose of conserving the ecological, social and cultural benefits that it brings, the Colombian Government, with the support of regional and local civil society organizations, promoted the designation of a conservation area. Technical exercises were carried out including biological and socioeconomic surveys, local stakeholder consultations and future scenario modeling. In June 2018, the Bita River basin was designated as the largest Ramsar site in Colombia, providing a worldwide example of explicit protection of riverine systems. In order to maintain this free-flowing river, land use and fisheries management, in conjunction with other conservation actions, are being implemented and provide a model of protection for freshwater ecosystems that could be replicated elsewhere.


2021 ◽  
Author(s):  
Vili Virkki ◽  
Elina Alanärä ◽  
Miina Porkka ◽  
Lauri Ahopelto ◽  
Tom Gleeson ◽  
...  

<p>The benefits of harnessing rivers into human use should not come with a disproportionate expense on the Earth system. Especially, freshwater ecosystems suffer greatly from direct and indirect human impacts, such as excessive water withdrawals and climate change, which are expected to only increase in the near future. Here, we aim for quantifying the extent and degree of considerable flow alterations that threaten the well-being of freshwater ecosystems, across the world.</p><p>At the global scale, the ecological status of river systems is often assessed using global hydrological models (GHMs) and hydrological environmental flow (EF) methods. These suffer from substantial uncertainties: 1) the GHMs parameterised with variable climate forcings may give highly dispersed discharge estimates and 2) individual hydrological EF methods capture ecosystem water needs poorly. We tackle these sources of uncertainty by introducing a novel methodology: environmental flow envelopes (EFEs). The EFE is an envelope of safe discharge variability between a lower and an upper bound, defined at the sub-basin scale in monthly time resolution. It is based on pre-industrial (1801-1860) discharge and a large ensemble of EF methods, GHMs, and climate forcings, using ISI-MIP2b data. Using the EFE, we can simultaneously assess the frequency and severity of ecosystem-threatening flow alterations.</p><p>Comparing post-industrial (1976-2005) discharge to the EFEs, discharge in 32.7% of the total 3860 sub-basins, covering 28.4% of the global landmass, violates the EFE during more than 10% of all months across four GHMs. These violations are considered as severe threats to freshwater ecosystems. The most impacted regions include areas with high anthropogenic pressure, such as the Middle East, India, Eastern Asia, and Middle America. The violations clearly concentrate on the EFE lower bound during low or intermediate flow seasons. Discharge in 61.4% of sub-basins violates the EFE during more than 10% of low flow season months, average violation being 47.5% below the safe limit denoted by EFE lower bound. Indications of significantly increased flows by violations of the EFE upper bound are fewer and further apart, as well as lower bound violations during high flow season.</p><p>Although fractional discharge allocations alone cannot fully capture the ecosystem water needs, this study is a step towards less uncertainty in global EF assessments. The introduced method provides a novel, globally robust way of estimating ecosystem water needs at the sub-basin scale. The results of this study underline the importance of the low flow season, during which EFE violations are the most prevalent. While only preliminary evidence of significantly increased flows emerges in relatively few areas, the EFE upper bound would benefit from further research. The EFE methodology can be used for exploring macro-regional areas where anthropogenic flow alteration threatens freshwater ecosystems the most. However, case-specific studies incorporating factors beyond quantitative flow only are required for practical implications.</p>


2020 ◽  
Vol 10 (24) ◽  
pp. 8882
Author(s):  
Jing-Ying Huang ◽  
Dong-Sin Shih

Although the annual rainfall in Taiwan is high, water shortages still occasionally occur owing to its nonuniform temporal and spatial distribution. At these times, the groundwater is considered an acceptable alternative water source. Groundwater is of particular value because it is considered a clean and reliable source of fresh water. To prevent water scarcity, this study utilized seasonal forecasting by incorporating hydrological models to evaluate the seasonal groundwater level. The seasonal prospective issued by the Central Weather Bureau of Taiwan (CWB) was combined with weather generator data to construct seasonal weather forecasts as the input for hydrological models. A rainfall-runoff model, HEC-HMS, and a coupled groundwater and surface water model, WASH123D, were applied to simulate the seasonal groundwater levels. The Fengshan Creek basin in northern Taiwan was selected as a study site to test the proposed approach. The simulations demonstrated stability and feasibility, and the results agreed with the observed groundwater table. The calibrations indicated that the average errors of river stage were 0.850 for R2, 0.279 for root-mean-square error (RMSE), and 0.824 for efficiency coefficient (CE). The simulation also revealed that the simulated groundwater table corresponded with observed hydrographs very well (R2 of 0.607, RMSE of 0.282 m, and CE of 0.621). The parameters were verified in this study, and they were deemed practical and adequate for subsequent seasonal assessment. The seasonal forecast of 2018 at Guanxi station indicated that the 25th and 75th percentiles of simulated annual rainfall were within 1921–3285 mm and the actual annual rainfall was 2031 mm. Its seasonal rainfall outlook was around 30% accurate for forecasts of three consecutive months in 2018. Similarly, at Xinpu station, its seasonal rainfall outlook was about 40% accurate, and the amount of annual rainfall (1295 mm) was within the range of the 25th and 75th percentiles (1193–1852 mm). This revealed that the actual annual precipitations at both Guanxi and Xinpu station corresponded with the range of 25th and 75th percentiles of simulated rainfall, even if the accurate rate for the 3 month seasonal forecast had some error. The subsequent groundwater simulations were overestimated because the amount of actual rainfall was far lower than the average of the historical record in some dry season months. However, the amount of rainfall returned to normal values during the wet seasons, where the seasonal forecast and observation results were similar.


2011 ◽  
Vol 4 (4) ◽  
pp. 943-955 ◽  
Author(s):  
G. Formetta ◽  
R. Mantilla ◽  
S. Franceschi ◽  
A. Antonello ◽  
R. Rigon

Abstract. This paper presents a discussion of the predictive capacity of the implementation of the semi-distributed hydrological modeling system JGrass-NewAge. This model focuses on the hydrological budgets of medium scale to large scale basins as the product of the processes at the hillslope scale with the interplay of the river network. The part of the modeling system presented here deals with the: (i) estimation of the space-time structure of precipitation, (ii) estimation of runoff production; (iii) aggregation and propagation of flows in channel; (v) estimation of evapotranspiration; (vi) automatic calibration of the discharge with the method of particle swarming. The system is based on a hillslope-link geometrical partition of the landscape, combining raster and vectorial treatment of hillslope data with vector based tracking of flow in channels. Measured precipitation are spatially interpolated with the use of kriging. Runoff production at each channel link is estimated through a peculiar application of the Hymod model. Routing in channels uses an integrated flow equation and produces discharges at any link end, for any link in the river network. Evapotranspiration is estimated with an implementation of the Priestley-Taylor equation. The model system assembly is calibrated using the particle swarming algorithm. A two year simulation of hourly discharge of the Little Washita (OK, USA) basin is presented and discussed with the support of some classical indices of goodness of fit, and analysis of the residuals. A novelty with respect to traditional hydrological modeling is that each of the elements above, including the preprocessing and the analysis tools, is implemented as a software component, built upon Object Modelling System v3 and jgrasstools prescriptions, that can be cleanly switched in and out at run-time, rather than at compiling time. The possibility of creating different modeling products by the connection of modules with or without the calibration tool, as for instance the case of the present modeling chain, reduces redundancy in programming, promotes collaborative work, enhances the productivity of researchers, and facilitates the search for the optimal modeling solution.


2018 ◽  
Vol 36 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Abdessamed Derdour ◽  
Abderrazak Bouanani ◽  
Kamila Babahamed

AbstractAin Sefra is one of the Algerian cities that had been experienced several devastating floods during the past 100 years. The purpose of this study is to simulate runoff in the semi-arid region of Ain Sefra watershed through the employing of the Hydrologic Engineering Center – Hydrologic Modelling System (HEC-HMS). In this paper, the frequency storm is used for the meteorological model, the Soil Conservation Service – curve number (SCS-CN) is selected to calculate the loss rate and Soil Conservation Service unit hydrograph method have been applied to simulate the runoff rate. After calibration and validation, the simulated peak discharges were very close with observed values. The Nash–Sutcliffe efficiency coefficient was 0.95, indicates that the hydrological modeling results are satisfactory and accepted for simulation of rainfall-runoff. The peak discharges obtained for the 10, 50, 100 and 1000 year storms are respectively 425.8, 750.5, 904.3 and 1328.3 m3∙s−1.


2021 ◽  
Vol 21 (1) ◽  
pp. 32
Author(s):  
Meri Juanda ◽  
Ina Lidiawati ◽  
Abdul Rahman Rusli

TWA Telaga Warna is a Nature Conservation Area which is mainly intended for tourism and nature recreation. TWA Potential of Telaga Warna is not yet known with certainty, given its intangible nature and has recently experienced a decrease in the number of visitors. For this reason, it is necessary to know the potential and strategies for developing tourism objects in TWA Telaga Warna. The method used in this research is based on the analysis of the area of operation of the object of natural tourist attraction (ADO - ODTWA), the index of the feasibility of an object and the analysis of strengths, weaknesses, opportunities and threats (SWOT). Based on the research, it was found that TWA Telaga Warna has potential tourism objects that are worth developing (77.55%) and the TWA Telaga Warna development strategy is the SO strategy, namely maximizing the strength (strength) owned and maximizing the opportunity (opportunity) by preserving the natural good flora. , fauna, natural beauty and water availability of TWA Telaga Warna are the satisfaction of visitors, making infrastructure so that visitors can enjoy natural panoramas and easy access to information, and making tour packages at TWA Telaga Warna in collaboration with the hotel.


2020 ◽  
Vol 21 (5) ◽  
pp. 1051-1072
Author(s):  
Yanchen Zheng ◽  
Jianzhu Li ◽  
Lixin Dong ◽  
Youtong Rong ◽  
Aiqing Kang ◽  
...  

AbstractInitial abstraction (Ia) is a sensitive parameter in hydrological models, and its value directly determines the amount of runoff. Ia, which is influenced by many factors related to antecedent watershed condition (AWC), is difficult to estimate due to lack of observed data. In the Soil Conservation Service curve number (SCS-CN) method, it is often assumed that Ia is 0.2 times the potential maximum retention S. Yet this assumption has frequently been questioned. In this paper, Ia/S and factors potentially influencing Ia were collected from rainfall–runoff events. Soil moisture and evaporation data were extracted from GLDAS-Noah datasets to represent AWC. Based on the driving factors of Ia, identified using the Pearson correlation coefficient and maximal information coefficient, artificial neural network (ANN)-estimated Ia was applied to simulate the selected flood events in the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model. The results indicated that Ia/S varies over different events and different watersheds. Over 75% of the Ia/S values are less than 0.2 in the two study areas. The driving factors affecting Ia vary over different watersheds, and the antecedent precipitation index appears to be the most influential factor. Flood simulation by the HEC-HMS model using statistical Ia gives the best fitness, whereas applying ANN-estimated Ia outperforms the simulation with median Ia/S. For over 60% of the flood events, ANN-estimated Ia provided better fitness in flood peak and depth, with an average Nash–Sutcliffe efficiency coefficient of 0.76 compared to 0.71 for median Ia/S. The proposed ANN-estimated Ia is physically based and can be applied without calibration, saving time in constructing hydrological models.


Sign in / Sign up

Export Citation Format

Share Document