scholarly journals Novel Insights to Be Gained From Applying Metacommunity Theory to Long-Term, Spatially Replicated Biodiversity Data

2021 ◽  
Vol 8 ◽  
Author(s):  
Sydne Record ◽  
Nicole M. Voelker ◽  
Phoebe L. Zarnetske ◽  
Nathan I. Wisnoski ◽  
Jonathan D. Tonkin ◽  
...  

Global loss of biodiversity and its associated ecosystem services is occurring at an alarming rate and is predicted to accelerate in the future. Metacommunity theory provides a framework to investigate multi-scale processes that drive change in biodiversity across space and time. Short-term ecological studies across space have progressed our understanding of biodiversity through a metacommunity lens, however, such snapshots in time have been limited in their ability to explain which processes, at which scales, generate observed spatial patterns. Temporal dynamics of metacommunities have been understudied, and large gaps in theory and empirical data have hindered progress in our understanding of underlying metacommunity processes that give rise to biodiversity patterns. Fortunately, we are at an important point in the history of ecology, where long-term studies with cross-scale spatial replication provide a means to gain a deeper understanding of the multiscale processes driving biodiversity patterns in time and space to inform metacommunity theory. The maturation of coordinated research and observation networks, such as the United States Long Term Ecological Research (LTER) program, provides an opportunity to advance explanation and prediction of biodiversity change with observational and experimental data at spatial and temporal scales greater than any single research group could accomplish. Synthesis of LTER network community datasets illustrates that long-term studies with spatial replication present an under-utilized resource for advancing spatio-temporal metacommunity research. We identify challenges towards synthesizing these data and present recommendations for addressing these challenges. We conclude with insights about how future monitoring efforts by coordinated research and observation networks could further the development of metacommunity theory and its applications aimed at improving conservation efforts.

2015 ◽  
Vol 282 (1806) ◽  
pp. 20150173 ◽  
Author(s):  
Ayco J. M. Tack ◽  
Tommi Mononen ◽  
Ilkka Hanski

Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly ( Melitaea cinxia ) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics.


2010 ◽  
Vol 10 (9) ◽  
pp. 21547-21565 ◽  
Author(s):  
W. J. R. French ◽  
F. J. Mulligan

Abstract. Temperature profiles from two satellite instruments – TIMED/SABER and Aura/MLS – have been used to calculate hydroxyl-layer equivalent temperatures for comparison with values measured from OH(6-2) emission lines observed by a ground-based spectrometer located at Davis Station, Antarctica (68° S, 78° E). The profile selection criteria – <500 km from the ground station and solar zenith angles >97° – yielded a total of 2359 SABER profiles over 8 years (2002–2009) and 7407 MLS profiles over 5.5 years (2004–2009). The availability of simultaneous OH volume emission rate (VER) profiles from the SABER (OH-B channel) enabled an assessment of the impact of several different weighting functions in the calculation of OH-equivalent temperatures. The maximum difference between all derived hydroxyl layer equivalent temperatures was less than 3 K. Restricting the miss-distance and miss-time criteria showed little effect on the bias, suggesting that the OH layer is relatively uniform over the spatial and temporal scales considered. However, a significant trend was found in the bias between SABER and Davis OH of ~0.7 K/year over the 8-year period with SABER becoming warmer compared with the Davis OH temperatures. In contrast, Aura MLS exhibited a cold bias of 9.9 ± 0.4 K compared with Davis OH, but importantly, the bias remained constant over the 2004–2009 year period examined. The difference in bias behaviour of the two satellites has significant implications for multi-annual and long-term studies using their data.


Author(s):  
William H. Schlesinger

Ecology has a history of long-term studies that offer great insight to ecosystem processes. The advent of the Long-Term Ecological Research (LTER) program institutionalized long-term studies with some core measurements at a selection of sites across North America. The most successful LTER sites are those that have an energetic leader with a clear vision, who has guided the work over many years. Several LTER sites have established successful education programs for K–12 and college-age students, as well as for science policy-makers. Implementation of more and better cross-site work would be welcome. The various essays in this volume reflect a broad range of experiences among participants in the LTER program. Nearly all are positive: only mad dogs bite the hand that feeds them. All authors appreciate the advantages of long-term funding for their research and lament that funding of the LTER program by the National Science Foundation (NSF) is so limited. There are numerous testimonials for how the LTER program has changed and broadened participation in collaborative science. The real question is whether the LTER program has allowed science to proceed faster, deeper, broader, and with more critical insight than if the program had not been created. To answer that question, I offer a few personal reflections on the LTER program. First, we must note that long-term research existed well before the LTER program. Edmondson began his long-term measurements of exogenous phosphorus in Lake Washington in the early 1950s (Edmondson 1991). Across the country, Herb Bormann and Gene Likens began long-term studies, now in their 50th year, of forest biogeochemistry at Hubbard Brook in 1963 (Likens 2013). Each of these long-term studies enjoys ample coverage in every text of introductory ecology. The advantages of long-term research are undisputed among those who are funded for it. Indeed, NSF embraces a wide variety of decade-long studies with its Long-Term Research in Environmental Biology (LTREB) program. The authors of several chapters recall how Howard Odum’s early work focused their attention on the connections between large units of the landscape.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2924
Author(s):  
Linyan Pan ◽  
Junfeng Dai ◽  
Zhiqiang Wu ◽  
Zupeng Wan ◽  
Zhenyu Zhang ◽  
...  

Spatio-temporal dynamics of riverine nitrogen (N) and phosphorus (P) in karst regions are closely linked to hydrological conditions, human activities and karst features in upstream catchments. From October 2017 to September 2019, we undertook 22 sampling campaigns in 11 nested catchments ranging from 21.00 to 373.37 km2 in Huixian karst wetland to quantify forms, concentrations, and fluxes of riverine total nitrogen (TN) and total phosphorus (TP), and to identify spatial and temporal variations of nutrients transfer from upstream to downstream, tributaries (Mudong River and Huixian River) to the main stem (Xiangsi River) in the dry and wet seasons. Considering the hydrological conditions, human activities and karst features within upstream catchments, the following three spatial and temporal variations of riverine nutrients were found over the monitoring period: (1) the dynamics of riverine nitrogen and phosphorus varied seasonally with hydrological conditions; (2) the spatial disparities of riverine nitrogen and phosphorus were induced by different human activities within catchment scales; (3) the dynamics of riverine nitrogen and phosphorus varied similarly at spatial scale restricted by karst features. The findings from this study may improve our understanding of the influence of hydrological conditions, human activities and karst features on nitrogen and phosphorus variations in river waters at different spatial and temporal scales in the Huixian karst wetland basin, and will help managers to protect and restore river water environments in karst basin from a catchment-scale perspective.


2020 ◽  
Vol 71 (1) ◽  
pp. 68 ◽  
Author(s):  
Brendan P. Kelaher ◽  
Andrew P. Colefax ◽  
Alejandro Tagliafico ◽  
Melanie J. Bishop ◽  
Anna Giles ◽  
...  

The turbulent waters off ocean beaches provide habitat for large marine fauna, including dolphins, sharks, rays, turtles and game fish. Although, historically, these assemblages have proven difficult to quantify, we used a new drone-based approach to assess spatial and temporal variation in assemblages of large marine fauna off four exposed beaches in New South Wales, Australia. In total, 4388 individual large marine animals were identified from 216 drone flights. The most common taxa, bottlenose dolphins (Tursiops spp.) and Australian cownose rays (Rhinoptera neglecta), occurred in 25.5 and 19.9% of flights respectively. White (Carcharodon carcharias), bull (Carcharhinus leucas) and other whaler (Carcharhinus spp.) sharks were observed in &lt;1% of flights. There was significant variation in the structure of assemblages of large fauna among beaches, with those adjacent to riverine estuaries having greater richness and abundance of wildlife. Overall, drone surveys were successful in documenting the spatio-temporal dynamics of an impressive suite of large marine fauna. We contend that emerging drone technology can make a valuable contribution to the ecological information required to ensure the long-term sustainability of sandy-beach ecosystems and associated marine wildlife.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 271 ◽  
Author(s):  
Susan Jones-Held ◽  
Michael Held ◽  
Joe Winstead ◽  
William Bryant

Wind disturbance is an important factor that can affect the development of the forests of the Central Hardwood Region of the United States. However, there have been few long-term studies of the recovery of these systems following wind damage. Long-term studies of protected forest systems, such as Dinsmore Woods in Northern Kentucky, within the fragmented forest of this region are valuable as they provide a resource to document and understand the effect of both abiotic and biotic challenges to forest systems. This study is a 40-year analysis of both overstory and understory changes in the forest system at Dinsmore Woods as the result of damage caused by severe winds in the spring of 1974. The forest was surveyed before and immediately following the windstorm and then at 10-year intervals. Although the windstorm had an immediate effect on the forest, the pattern of damage was complex. The forest canopy (diameter at breast height (DBH) ≥ 30 cm) experienced an irregular pattern of damage while in the subcanopy (DBH ≤ 30 cm) there was a 25% reduction in total basal area. However, the major effects of the windstorm were delayed and subsequently have altered forest recovery. Ten years following the disturbance declines were seen in total density and basal area in the canopy and subcanopy of the forest as a consequence of windstorm damage. In the past 20 years the total basal area of the canopy has increased and exceeds the pre-disturbance total basal area. In contrast, the subcanopy total basal area continued to decline 20 years post-disturbance and has not recovered. Further openings in the canopy and subcanopy due to the delayed windstorm effects helped to establish a dense understory of native shrubs and sugar maple which have affected tree regeneration and is reflected in the continual decline in species diversity in the subcanopy and sapling strata over the 40-year period.


2010 ◽  
Vol 10 (23) ◽  
pp. 11439-11446 ◽  
Author(s):  
W. J. R. French ◽  
F. J. Mulligan

Abstract. Temperature profiles from two satellite instruments – TIMED/SABER and Aura/MLS – have been used to calculate hydroxyl-layer equivalent temperatures for comparison with values measured from OH(6-2) emission lines observed by a ground-based spectrometer located at Davis Station, Antarctica (68° S, 78° E). The profile selection criteria – miss-distance <500 km from the ground station and solar zenith angles >97° – yielded a total of 2359 SABER profiles over 8 years (2002–2009) and 7407 MLS profiles over 5.5 years (2004–2009). The availability of simultaneous OH volume emission rate (VER) profiles from the SABER (OH-B channel) enabled an assessment of the impact of several different weighting functions in the calculation of OH-equivalent temperatures. The maximum difference between all derived hydroxyl layer equivalent temperatures was less than 3 K. Restricting the miss-distance and miss-time criteria showed little effect on the bias, suggesting that the OH layer is relatively uniform over the spatial and temporal scales considered. However, a significant trend was found in the bias between SABER and Davis OH of ~0.7 K/year over the 8-year period with SABER becoming warmer compared with the Davis OH temperatures. In contrast, Aura/MLS exhibited a cold bias of 9.9 ± 0.4 K compared with Davis OH, but importantly, the bias remained constant over the 2004–2009 year period examined. The difference in bias behaviour of the two satellites has significant implications for multi-annual and long-term studies using their data.


Author(s):  
Steven McGee ◽  
Jess K. Zimmerman

As the developers of Journey to El Yunque, we have taken a different approach to the process of designing a science curriculum. Rather than start with a specific set of concepts or skills to target as learning outcomes, we started by identifying a specific community of practice to which we sought to connect students. Researchers in the El Yunque rainforest in Puerto Rico have been studying the impact of hurricanes on ecosystem dynamics and have been modeling what the long-term impact would be if changes to the global climate increase the frequency of severe hurricanes. Therefore, hurricane impact became the focal phenomenon for the unit. We modeled the process of investigating hurricane impact after the long-term ecological research practices of researchers in El Yunque. Students begin by investigating the long-term impact of hurricanes on the producers in El Yunque. Next students investigate the long-term impact of hurricanes on various consumers in the rainforest. Finally, students investigate how hurricanes impact the cycling of resources directly as well as indirectly through changes in organisms’ use of those resources in the rainforest. A central tension in the design process is how to coherently represent the spatial relationships between the components of the ecosystem and the temporal dynamics of the individual components. In this paper, we present the evolution of the program as we sought to balance that design tension and build an environment that connects students to the central phenomenon and practices of the community of researchers in El Yunque. 


Sign in / Sign up

Export Citation Format

Share Document