Assessing variation in assemblages of large marine fauna off ocean beaches using drones

2020 ◽  
Vol 71 (1) ◽  
pp. 68 ◽  
Author(s):  
Brendan P. Kelaher ◽  
Andrew P. Colefax ◽  
Alejandro Tagliafico ◽  
Melanie J. Bishop ◽  
Anna Giles ◽  
...  

The turbulent waters off ocean beaches provide habitat for large marine fauna, including dolphins, sharks, rays, turtles and game fish. Although, historically, these assemblages have proven difficult to quantify, we used a new drone-based approach to assess spatial and temporal variation in assemblages of large marine fauna off four exposed beaches in New South Wales, Australia. In total, 4388 individual large marine animals were identified from 216 drone flights. The most common taxa, bottlenose dolphins (Tursiops spp.) and Australian cownose rays (Rhinoptera neglecta), occurred in 25.5 and 19.9% of flights respectively. White (Carcharodon carcharias), bull (Carcharhinus leucas) and other whaler (Carcharhinus spp.) sharks were observed in <1% of flights. There was significant variation in the structure of assemblages of large fauna among beaches, with those adjacent to riverine estuaries having greater richness and abundance of wildlife. Overall, drone surveys were successful in documenting the spatio-temporal dynamics of an impressive suite of large marine fauna. We contend that emerging drone technology can make a valuable contribution to the ecological information required to ensure the long-term sustainability of sandy-beach ecosystems and associated marine wildlife.

2015 ◽  
Vol 282 (1806) ◽  
pp. 20150173 ◽  
Author(s):  
Ayco J. M. Tack ◽  
Tommi Mononen ◽  
Ilkka Hanski

Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly ( Melitaea cinxia ) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

Long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, with spatial and temporal variation in the strength of selection a critical driver of genetic variation in natural populations. In 2012, we began a long term study of genome-wide molecular evolution in populations of the butterfly Lycaeides ideas in the Greater Yellowstone Area (GYA). We aimed to quantify the role of environment-dependent selection on evolution in these populations. Building on previous work, in 2017 we collected new samples, incorporated distance sampling, and surveyed the insect community at each site. We also defined the habitat boundary at anew, eleventh site. Our preliminary analyses suggest that both genetic drift and selection are important drivers in this system.   Featured photo from Figure 1 in report.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sydne Record ◽  
Nicole M. Voelker ◽  
Phoebe L. Zarnetske ◽  
Nathan I. Wisnoski ◽  
Jonathan D. Tonkin ◽  
...  

Global loss of biodiversity and its associated ecosystem services is occurring at an alarming rate and is predicted to accelerate in the future. Metacommunity theory provides a framework to investigate multi-scale processes that drive change in biodiversity across space and time. Short-term ecological studies across space have progressed our understanding of biodiversity through a metacommunity lens, however, such snapshots in time have been limited in their ability to explain which processes, at which scales, generate observed spatial patterns. Temporal dynamics of metacommunities have been understudied, and large gaps in theory and empirical data have hindered progress in our understanding of underlying metacommunity processes that give rise to biodiversity patterns. Fortunately, we are at an important point in the history of ecology, where long-term studies with cross-scale spatial replication provide a means to gain a deeper understanding of the multiscale processes driving biodiversity patterns in time and space to inform metacommunity theory. The maturation of coordinated research and observation networks, such as the United States Long Term Ecological Research (LTER) program, provides an opportunity to advance explanation and prediction of biodiversity change with observational and experimental data at spatial and temporal scales greater than any single research group could accomplish. Synthesis of LTER network community datasets illustrates that long-term studies with spatial replication present an under-utilized resource for advancing spatio-temporal metacommunity research. We identify challenges towards synthesizing these data and present recommendations for addressing these challenges. We conclude with insights about how future monitoring efforts by coordinated research and observation networks could further the development of metacommunity theory and its applications aimed at improving conservation efforts.


Author(s):  
S. Naish ◽  
S. Tong

Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.


2016 ◽  
Vol 3 (12) ◽  
pp. 160560 ◽  
Author(s):  
Fredrik Christiansen ◽  
Katherine A. McHugh ◽  
Lars Bejder ◽  
Eilidh M. Siegal ◽  
David Lusseau ◽  
...  

Food provisioning of wildlife is a major concern for management and conservation agencies worldwide because it encourages unnatural behaviours in wild animals and increases each individual's risk for injury and death. Here we investigate the contributing factors and potential fitness consequences of a recent increase in the frequency of human interactions with common bottlenose dolphins ( Tursiops truncatus ) in Sarasota Bay, Florida. A rising proportion of the local long-term resident dolphin community is becoming conditioned to human interactions through direct and indirect food provisioning. We investigate variables that are affecting conditioning and if the presence of human-induced injuries is higher for conditioned versus unconditioned dolphins. Using the most comprehensive long-term dataset available for a free-ranging bottlenose dolphin population (more than 45 years; more than 32 000 dolphin group sightings; more than 1100 individuals), we found that the association with already conditioned animals strongly affected the probability of dolphins becoming conditioned to human interactions, confirming earlier findings that conditioning is partly a learned behaviour. More importantly, we found that conditioned dolphins were more likely to be injured by human interactions when compared with unconditioned animals. This is alarming, as conditioning could lead to a decrease in survival, which could have population-level consequences. We did not find a significant relationship between human exposure or natural prey availability and the probability of dolphins becoming conditioned. This could be due to low sample size or insufficient spatio-temporal resolution in the available data. Our findings show that wildlife provisioning may lead to a decrease in survival, which could ultimately affect population dynamics.


2016 ◽  
Vol 107 (2) ◽  
pp. 225-233 ◽  
Author(s):  
S. Fischer ◽  
M.S. De Majo ◽  
L. Quiroga ◽  
M. Paez ◽  
N. Schweigmann

AbstractBuenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1112 ◽  
Author(s):  
Anton G. Shiryaev ◽  
Pavel A. Moiseev ◽  
Ursula Peintner ◽  
Nadezhda M. Devi ◽  
Vladimir V. Kukarskih ◽  
...  

The long-term influence of climate change on spatio-temporal dynamics of the Polar mycobiota was analyzed on the eastern macro slope of the Polar Urals (Sob River valley and Mountain Slantsevaya) over a period of 60 years. The anthropogenic impact is minimal in the study area. Effects of environmental warming were addressed as changes in treeline and forest communities (greening of the vegetation). With warming, permafrost is beginning to thaw, and as it thaws, it decomposes. Therefore, we also included depth of soil thawing and litter decomposition in our study. Particular attention was paid to the reaction of aphyllophoroid fungal communities concerning these factors. Our results provide evidence for drastic changes in the mycobiota due to global warming. Fungal community composition followed changes of the vegetation, which was transforming from forest-tundra to northern boreal type forests during the last 60 years. Key fungal groups of the ongoing borealization and important indicator species are discussed. Increased economic activity in the area may lead to deforestation, destruction of swamps, and meadows. However, this special environment provides important services such as carbon sequestration, soil formation, protecting against flood risks, and filtering of air. In this regard, we propose to include the studied territory in the Polarnouralsky Natural Park.


2003 ◽  
Vol 54 (2) ◽  
pp. 163 ◽  
Author(s):  
Shane P. Griffiths

Spatial and temporal variation, and factors influencing the structure of intertidal rockpool fish assemblages were quantitatively investigated at three large rocky headlands in south-eastern New South Wales, Australia. A total of 5244 fish from 46 species, mainly permanent intertidal residents from the families Clinidae, Blenniidae, Tripterygiidae, Gobiidae, Gobiesocidae and Girellidae, was caught in the rockpools. Numbers of species and individuals and dominance patterns of species showed significant variability within locations, possibly in response to variations in rockpool tidal height and volume, or environmental variables, such as temperature and dissolved oxygen. Species composition also differed among locations, probably as a result of availability of different habitats at each location, which may be preferred by different species. Fish assemblage structure was stable and persistent through time, presumably because rockpools are colonized only by species suitably adapted to the dynamic intertidal environment. Temporal variability in the abundance of some common species occurred during summer and autumn, mainly owing to recruitment of resident fishes. Directions for future research are given, which may contribute to an understanding of the processes that underpin these patterns.


Sign in / Sign up

Export Citation Format

Share Document