scholarly journals Thermal Sensitivity of Heat Sensor TRPA1 Correlates With Temperatures Inducing Heat Avoidance Behavior in Terrestrial Ectotherms

2021 ◽  
Vol 9 ◽  
Author(s):  
Hiroshi Akashi

Temperature is an essential environmental factor that controls an organism’s performances. As ectothermic animals largely rely on external heat sources for adjusting their body temperature, thermal perception is a primary process of behavioral thermoregulation. Transient receptor potential ankyrin 1 (TRPA1) is a heat sensitive ion channel in most non-mammalian species, and its heat activation has been suggested to induce heat avoidance behaviors in ectothermic animals. However, associations between TRPA1 and ecologically relevant temperatures have not been investigated, and the analyses including diverse taxa will provide robust support for understanding the associations. Here, I conducted extensive literature review, and assembled published data on thermal threshold of TRPA1 and three physiological parameters: the experimental voluntary maximum (EVM), which is body temperatures when heat avoidance behaviors are induced; the critical thermal maximum (CTmax), which is a point in temperature beyond which an organism becomes incapacitated; and average body temperature (Tmean) recorded in the field. Then, I examined the relationships between thermal threshold of TRPA1 and each of the three physiological parameters. As phylogenetically closely related species tend to show similar trait values among species, I conducted the regression analyses by accounting for phylogenetic distances among species. This study supports previous research by affirming that thermal threshold of TRPA1 is substantially correlated with body temperature that the animals escaped from the heat source, represented here as EVM. Nevertheless, thermal threshold of TRPA1 showed a statistically insignificant correlation with CTmax and Tmean. The results suggest that although thermal threshold of TRPA1 is evolutionarily labile, its associations with EVM is highly conserved among diverse terrestrial ectotherms. Therefore, thermal threshold of TRPA1 could be a useful parameter to evaluate species vulnerability to thermal stress particularly in the recent climate warming scenario.

2012 ◽  
Vol 342 (2) ◽  
pp. 416-428 ◽  
Author(s):  
Regina M. Reilly ◽  
Heath A. McDonald ◽  
Pamela S. Puttfarcken ◽  
Shailen K. Joshi ◽  
LaGeisha Lewis ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247514
Author(s):  
Jean-François Le Galliard ◽  
David Rozen-Rechels ◽  
Anjélica Lecomte ◽  
Clémence Demay ◽  
Andréaz Dupoué ◽  
...  

Thermoregulation is critical for ectotherms as it allows them to maintain their body temperature close to an optimum for ecological performance. Thermoregulation includes a range of behaviors that aim at regulating body temperature within a range centered around the thermal preference. Thermal preference is typically measured in a thermal gradient in fully-hydrated and post-absorptive animals. Short-term effects of the hydric environment on thermal preferences in such set-ups have been rarely quantified in dry-skinned ectotherms, despite accumulating evidence that dehydration might trade-off with behavioral thermoregulation. Using experiments performed under controlled conditions in climatic chambers, we demonstrate that thermal preferences of a ground-dwelling, actively foraging lizard (Zootoca vivipara) are weakly decreased by a daily restriction in free-standing water availability (less than 0.5°C contrast). The influence of air humidity during the day on thermal preferences depends on time of the day and sex of the lizard, and is generally weaker than those of of free-standing water (less than 1°C contrast). This shows that short-term dehydration can influence, albeit weakly, thermal preferences under some circumstances in this species. Environmental humidity conditions are important methodological factors to consider in the analysis of thermal preferences.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marco J. Cabrerizo ◽  
Emilio Marañón

Grazing pressure, estimated as the ratio between microzooplankton grazing and phytoplankton growth rates (g:μ), is a strong determinant of microbial food-web structure and element cycling in the upper ocean. It is generally accepted that g is more sensitive to temperature than μ, but it remains unknown how the thermal dependence (activation energy, Ea) of g:μ varies over spatial and temporal scales. To tackle this uncertainty, we used an extensive literature analysis obtaining 751 paired rate estimates of μ and g from dilution experiments performed throughout the world’s marine environments. On a geographical scale, we found a stimulatory effect of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions, and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On a seasonal scale, the temperature effect on g:μ ratios was stimulatory, particularly in polar environments; however, the large variability existing between estimates resulted in non-significant differences among biomes. We observed that increases in nitrate availability stimulated the temperature dependence of grazing pressure (i.e., led to more positive Ea of g:μ) in open-ocean ecosystems and inhibited it in coastal ones, particularly in polar environments. The percentage of primary production grazed by microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of surface ocean waters could exert a highly variable impact, in terms of both magnitude and direction (stimulation or inhibition), on microzooplankton grazing pressure in different ocean regions.


Author(s):  
Anson W. Mackay ◽  
Rebecca Lee ◽  
James M. Russell

Abstract Rwenzori Mountains National Park, which straddles the border between the Democratic Republic of Congo and Uganda, has experienced rapid glacier loss since the beginning of the twentieth century, yet there has been little investigation of aquatic biodiversity change in the park. This study presents a paleolimnological analysis from Lake Mahoma (2990 m asl), which is situated in the bamboo-forest transition zone. Diatom and organic geochemistry data from a 39-cm-long sediment core with a basal age of c. 1715 CE were compared with new analyses of previously published data from Lakes Bujuku (3891 m asl) and Lower Kitandara (3989 m asl), in the alpine zone. Comparisons were made to determine if aquatic ecosystem changes exhibited similar inter-lake patterns over the past ~ 150 years of climate warming and glacial recession, or if only local change was apparent. The diatom flora of Lake Mahoma is acidophilous, dominated by Aulacoseira ikapoënsis since at least the mid eighteenth century. In recent decades, the obligate nitrogen-heterotroph Nitzschia palea increased in importance, concurrent with declining δ15Norg values. We suggest that these late twentieth century changes were linked to regional warming and increased thermal stratification of Lake Mahoma. Regional comparisons of the Rwenzori lakes were done using existing organic geochemistry records (total organic carbon, C/N and δ13Corg) and through diatom compositional turnover analyses, and categorisation of species into one of four diatom growth morphology traits, or guilds: tychoplanktonic, high-profile, low-profile and motile. Over the past 150 years, all three lakes showed unidirectional, compositional diatom turnover, indicating that deterministic processes had affected diatom communities. Declining turnover at each site is broadly mirrored by an increase in tychoplanktonic taxa, along with concomitant declines in high-profile diatoms at Lake Mahoma, and low-profile diatoms at Lake Bujuku, and at least for the past 60 years, at Lower Kitandara. The interplay between diatom guilds at all sites is mainly a consequence of competition for available resources. Sediment organic carbon at all sites comes from both autochthonous and allochthonous sources, the relative abundances of which are influenced by the time elapsed since lakes had glaciers in their catchment.


2019 ◽  
Vol 171 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Richard McFarland ◽  
Louise Barrett ◽  
Mary‐Ann Costello ◽  
Andrea Fuller ◽  
Robyn S. Hetem ◽  
...  

1989 ◽  
Vol 66 (1) ◽  
pp. 238-244 ◽  
Author(s):  
A. G. Macdonald ◽  
N. R. Marshall ◽  
R. G. Pertwee

Mice exposed to normoxic He and Ne at increased pressure and allowed to choose between a neutral and a cool environment showed a preference for the cooler environment. This behavior was apparent at 5.7 but not at 2.5 atm He. At 11.3 atm He and Ne, the behavior was associated with a similar reduction in the deep body temperature to a new steady level. The reduction in body temperature increased with pressure, up to 35 atm He, the maximum studied. Since the heat transfer of the He and Ne gas mixtures is different and both gases exert negligible anesthetic effects, the hydrostatic pressure most likely affects behavioral thermoregulation by affecting neuronal function.


2006 ◽  
Vol 291 (3) ◽  
pp. R541-R550 ◽  
Author(s):  
Dan Ni ◽  
Qihai Gu ◽  
Hong-Zhen Hu ◽  
Na Gao ◽  
Michael X. Zhu ◽  
...  

A recent study has demonstrated that increasing the intrathoracic temperature from 36°C to 41°C induced a distinct stimulatory and sensitizing effect on vagal pulmonary C-fiber afferents in anesthetized rats ( J Physiol 565: 295–308, 2005). We postulated that these responses are mediated through a direct activation of the temperature-sensitive transient receptor potential vanilloid (TRPV) receptors by hyperthermia. To test this hypothesis, we studied the effect of increasing temperature on pulmonary sensory neurons that were isolated from adult rat nodose/jugular ganglion and identified by retrograde labeling, using the whole cell perforated patch-clamping technique. Our results showed that increasing temperature from 23°C (or 35°C) to 41°C in a ramp pattern evoked an inward current, which began to emerge after exceeding a threshold of ∼34.4°C and then increased sharply in amplitude as the temperature was further increased, reaching a peak current of 173 ± 27 pA ( n = 75) at 41°C. The temperature coefficient, Q10, was 29.5 ± 6.4 over the range of 35–41°C. The peak inward current was only partially blocked by pretreatment with capsazepine (Δ I = 48.1 ± 4.7%, n = 11) or AMG 9810 (Δ I = 59.2 ± 7.8%, n = 8), selective antagonists of the TRPV1 channel, but almost completely abolished (Δ I = 96.3 ± 2.3%) by ruthenium red, an effective blocker of TRPV1–4 channels. Furthermore, positive expressions of TRPV1–4 transcripts and proteins in these neurons were demonstrated by RT-PCR and immunohistochemistry experiments, respectively. On the basis of these results, we conclude that increasing temperature within the normal physiological range can exert a direct stimulatory effect on pulmonary sensory neurons, and this effect is mediated through the activation of TRPV1, as well as other subtypes of TRPV channels.


1998 ◽  
Vol 46 (4) ◽  
pp. 317 ◽  
Author(s):  
Gavin S. Bedford ◽  
Keith A. Christian

Pythons have standard metabolic rates and preferred body temperatures that are lower than those of most other reptiles. This study investigated metabolic rates and preferred body temperatures of seven taxa of Australian pythons. We found that Australian pythons have particularly low metabolic rates when compared with other boid snakes, and that the metabolic rates of the pythons did not change either seasonally or on a daily cycle. Preferred body temperatures do vary seasonally in some species but not in others. Across all species and seasons, the preferred body temperature range was only 4.9˚C. The thermal sensitivity (Q10) of oxygen consumption by pythons conformed to the established range of between 2 and 3. Allometric equations for the pooled python data at each of the experimental temperatures gave an equation exponent of 0.72–0.76, which is similar to previously reported values. By having low preferred body temperatures and low metabolic rates, pythons appear to be able to conserve energy while still maintaining a vigilant ‘sit and wait’ predatory existence. These physiological attributes would allow pythons to maximise the time they can spend ‘sitting and waiting’ in the pursuit of prey.


Sign in / Sign up

Export Citation Format

Share Document