scholarly journals Development and First Tests of a Lab-Scale Electric Field for Investigating Potential Effects of Electric Barriers on Aquatic Invasive Invertebrates

2021 ◽  
Vol 9 ◽  
Author(s):  
Rachel M. Egly ◽  
Robert D. Polak ◽  
Zalia A. Cook ◽  
Harrison D. Moy ◽  
Jonathon T. Staunton ◽  
...  

Canals and other connected waterway systems, including the Chicago Area Waterway System (CAWS), have often facilitated the spread of non-native species. Electric barriers have recently emerged as a method for preventing this spread and protecting uninvaded ecosystems from new invaders. The largest system of electric barriers in the world is in the CAWS and is operated primarily to prevent the spread of invasive Asian carp. It is not known whether these barriers are effective for other species, particularly invasive invertebrates. Here, we provide data regarding the efficacy of an electric field that operates at the same parameters as the electric barrier in the CAWS in affecting behaviors of two invertebrate species, the red swamp crayfish Procambarus clarkii and the amphipod Hyalella azteca. We constructed an electric field within a tank that operates at the same parameters as the existing CAWS barriers and determined the effects of the electric field on our test species. At the electric field parameters of the CAWS barriers, the vast majority of P. clarkii individuals showed altered movement with maintained equilibrium. For H. azteca, behavioral responses were less extreme than for P. clarkii, with a majority of individuals experiencing altered movement. By measuring the orientation of organisms to the electric field, we determined that the test organisms are affected by the electric field, especially at lower field strengths where they exhibited no or little other behavioral response. At lower field strengths, P. clarkii exhibited changes in orientation, but at higher field strengths, individuals were less able to orient themselves. H. azteca exhibited changes in orientation to the electric field at all field strengths. The results of this study suggest that the existing electric barriers may not slow or prevent spread of invasive invertebrates—including amphipods and crayfish—through passive movement attached boats/barges or through downstream drift, but that the barriers may prevent spread by active upstream movement. Overall, our work gives new data regarding the efficacy of electric fields in preventing the spread of invasive invertebrates and can inform management decisions regarding current and future electric barriers in the CAWS.

2010 ◽  
Vol 75 (7) ◽  
pp. E433-E443 ◽  
Author(s):  
Suvaluk Asavasanti ◽  
Seda Ersus ◽  
William Ristenpart ◽  
Pieter Stroeve ◽  
Diane M. Barrett

2019 ◽  
Author(s):  
Elina Zmeykina ◽  
Matthias Mittner ◽  
Walter Paulus ◽  
Zsolt Turi

Repetitive transcranial magnetic stimulation (rTMS) is a potent tool for modulating endogenous oscillations in humans. The current standard dosing method for rTMS defines the electric field strength only indirectly. A better characterization of the electric field strength induced by a given rTMS protocol is necessary in order to improve the understanding of the neural mechanisms of rTMS. In this study we used a novel approach, in which individualized prospective computational modeling of the induced electric field guided the choice of stimulation intensity. We consistently found that rhythmic rTMS protocols increased neural synchronization in the posterior alpha frequency band when measured simultaneously with scalp electroencephalography. We observed this effect already at electric field strengths of roughly half the lowest conventional dose, which is 80% of the resting motor threshold. We conclude that rTMS can induce immediate electrophysiological effects at much weaker electric field strengths than previously thought.


2000 ◽  
Vol 65 (6) ◽  
pp. 984-989 ◽  
Author(s):  
C.J. McDonald ◽  
S.W. Lloyd ◽  
M.A. Vitale ◽  
K. Petersson ◽  
F. Innings

2021 ◽  
Author(s):  
Harry Tran ◽  
Sina Shirinpour ◽  
Alexander Opitz

AbstractNeural oscillations are a key mechanism for information transfer in brain circuits. Rhythmic fluctuations of local field potentials control spike timing through cyclic membrane de- and hyperpolarization. Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation method which can directly interact with brain oscillatory activity by imposing an oscillating electric field on neurons. Despite its increasing use, the basic mechanisms of tACS are still not fully understood. Here, we investigate in a computational study the effects of tACS on morphologically realistic neurons with ongoing spiking activity. We characterize the membrane polarization as a function of electric field strength and subsequent effects on spiking activity in a set of 25 neurons from different neocortical layers. We find that tACS does not affect the firing rate of investigated neurons for electric field strengths applicable to human studies. However, we find that the applied electric fields entrain the spiking activity of large pyramidal neurons at < 1mV/mm field strengths. Our model results are in line with recent experimental studies and can provide a mechanistic framework to understand the effects of oscillating electric fields on single neuron activity. They highlight the importance of neuron morphology in responsiveness to electrical stimulation and suggest that large pyramidal neurons are most likely the prime target for tACS.


2020 ◽  
Vol 92 (2) ◽  
pp. 20401
Author(s):  
Evgeniy Dul'kin ◽  
Michael Roth

In relaxor (1-x)SrTiO3-xBiFeO3 ferroelectrics ceramics (x = 0.2, 0.3 and 0.4) both intermediate temperatures and Burns temperatures were successfully detected and their behavior were investigated in dependence on an external bias field using an acoustic emission. All these temperatures exhibit a non-trivial behavior, i.e. attain the minima at some threshold fields as a bias field enhances. It is established that the threshold fields decrease as x increases in (1-x)SrTiO3-xBiFeO3, as it previously observed in (1-x)SrTiO3-xBaTiO3 (E. Dul'kin, J. Zhai, M. Roth, Phys. Status Solidi B 252, 2079 (2015)). Based on the data of the threshold fields the mechanisms of arising of random electric fields are discussed and their strengths are compared in both these relaxor ferroelectrics.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


1977 ◽  
Vol 12 (1) ◽  
pp. 27-50 ◽  
Author(s):  
L.A. Behie ◽  
J.E. Zajic ◽  
D. Berk ◽  
R.J.P. Brouzes ◽  
V.A. Naish

Abstract Although Daphnia magna have been widely used in the determination of the toxicity of various substances, there are no reports in the literature that describe a rigorous bioassay method using this organism as a test species. The test described herein involves the standariza-tion of various important aspects of the method such as the age of the test organisms, and the dilution water used for the preparation of the various toxicant concentrations. Also described is a simple method for the statistical analysis of the results. The sensitivity of the proposed bioassay is demonstrated by determining the toxicity of various pulp and paper effluents. Finally, extensive bioassays were carried out simultaneously with rainbow trout and Daphnia magna indicating that Daphnia are as good a biological indicator of acute toxicity as fish.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


Sign in / Sign up

Export Citation Format

Share Document