scholarly journals Restoration of Degraded Alpine Meadows Improves Pollination Network Robustness and Function in the Tibetan Plateau

2021 ◽  
Vol 9 ◽  
Author(s):  
Erliang Gao ◽  
Yuxian Wang ◽  
Cheng Bi ◽  
Christopher N. Kaiser-Bunbury ◽  
Zhigang Zhao

Ecological restoration is widely used to mitigate the negative impacts of anthropogenic activities. There is an increasing demand to identify suitable restoration management strategies for specific habitat and disturbance types to restore interactions between organisms of degraded habitats, such as pollination. In the Tibetan Plateau, alpine meadows have suffered severe degradation due to overgrazing and climate change. Protecting vegetation by fencing during the growing season is a widely applied management regime for restoration of degraded grasslands in this region. Here, we investigated the effect of this restoration strategy on plant–pollinator communities and plant reproduction in the eastern Tibetan Plateau. We collected interaction and seed set data monthly across three grazed (grazed all year) and three ungrazed (fenced during growing season) alpine meadows in growing seasons of two consecutive years. We found ungrazed meadows produced more flowers and attracted more pollinator visits. Many common network metrics, such as nestedness, connectance, network specialization, and modularity, did not differ between grazing treatments. However, plants in ungrazed meadows were more robust to secondary species extinction than those in grazed meadows. The observed changes in the networks corresponded with higher seed set of plants that rely on pollinators for reproduction. Our results indicate that protection from grazing in growing seasons improves pollination network stability and function and thus is a viable restoration approach for degraded meadows.

2008 ◽  
Vol 50 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Qi-Wu Hu ◽  
Qin Wu ◽  
Guang-Min Cao ◽  
Dong Li ◽  
Rui-Jun Long ◽  
...  

2018 ◽  
Vol 174 ◽  
pp. 92-98 ◽  
Author(s):  
Na Guo ◽  
Aidong Wang ◽  
A. Allan Degen ◽  
Bin Deng ◽  
Zhanhuan Shang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Courtney G. Collins ◽  
Sarah C. Elmendorf ◽  
Robert D. Hollister ◽  
Greg H. R. Henry ◽  
Karin Clark ◽  
...  

AbstractRapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Oryx ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Xuchang Liang ◽  
Aili Kang ◽  
Nathalie Pettorelli

AbstractWe tested a series of hypotheses on drivers of habitat selection by the Vulnerable wild yak Bos mutus, combining distribution-wide sighting data with species distribution modelling approaches. The results indicate that climatic conditions are of paramount importance in shaping the wild yak's distribution on the Tibetan Plateau. Habitat selection patterns were seasonal, with yaks appearing to select areas closer to villages during the vegetation-growing season. Unexpectedly, our index of forage quantity had a limited effect in determining the distribution of the species. Overall, our results suggest that expected changes in climate for this region could have a significant impact on habitat availability for wild yaks, and we call for more attention to be focused on the unique wildlife in this ecosystem.


2020 ◽  
Vol 9 (1) ◽  
pp. 231-250
Author(s):  
Birendra Prasad Sharma ◽  
Subash Adhikari ◽  
Ganesh Paudel ◽  
Namita Paudel Adhikari

Microorganisms, as successive members of the food web, play a major role in biological processes. They are found in environments ranging from extremely hot to harsh cold temperatures. Thus, the study of bacterial communities in various ecosystems is of great concern around the world. The glacier is one of the parts of the cryosphere, which is the key component and sensitive indicator of climatic and environmental changes. A glacial ecosystem is a habitat for various microorganisms, i.e., autotrophic and heterotrophic. Different physicochemical parameters like temperature, pH, electrical conductivity, the input of nutrient concentration, precipitation, ions concentrations, etc. influence the microbial diversity in the glacial ecosystem for their metabolic processes. Successive studies of bacterial communities in the Himalayan glacial ecosystem are reliable proxies to know the relationships between microbial biodiversity and climate change since the Himalayan glaciers are free from anthropogenic activities. After the study of the relevant literature, it is clear that the researches. have been carried out in the Polar Regions, and the Tibetan plateau mainly focused on the glacial ecosystem. This review concluded that Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Actinobacteria were the most dominant bacterial phyla via 16S rRNA clone libraries and Illumina MiSeq. Alter in landscapes, nutrient cycles, exposure of light, shifting on the concentration of different elements, glacier retreats were the major components for survival strength of dominant bacterial phyla. However, limited studies on the glacial ecosystem of the Himalayas have been published. Thus, the study of bacterial abundance, diversity, and community in the Himalayas will help plug this research gap.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2605 ◽  
Author(s):  
Huamin Zhang ◽  
Mingjun Ding ◽  
Lanhui Li ◽  
Linshan Liu

Based on daily observation records at 277 meteorological stations on the Tibetan Plateau (TP) and its surrounding areas during 1970–2017, drought evolution was investigated using the Standardized Precipitation Evapotranspiration Index (SPEI). First, the spatiotemporal changes in the growing season of SPEI (SPEIgs) were re-examined using the Mann–Kendall and Sen’s slope approach—the piecewise linear regression and intensity analysis approach. Then, the persistence of the SPEIgs trend was predicted by the Hurst exponent. The results showed that the SPEIgs on the TP exhibited a significant increasing trend at the rate of 0.10 decade−1 (p < 0.05) and that there is no significant trend shift in SPEIgs (p = 0.37), indicating that the TP tended to undergo continuous wetting during 1970–2017. In contrast, the areas surrounding the TP underwent a significant trend shift from an increase to a decrease in SPEIgs around 1984 (p < 0.05), resulting in a weak decreasing trend overall. Spatially, most of the stations on the TP were characterized by an increasing trend in SPEIgs, except those on the Eastern fringe of TP. The rate of drought/wet changes was relatively fast during the 1970s and 1980s, and gradually slowed afterward on the TP. Finally, the consistent increasing trend and decreasing trend of SPEIgs on the TP and the area East of the TP were predicted to continue in the future, respectively. Our results highlight that the TP experienced a significant continuous wetting trend in the growing season during 1970–2017, and this trend is likely to continue.


2017 ◽  
Vol 10 (11) ◽  
pp. 1098-1117 ◽  
Author(s):  
Jiaqiang Du ◽  
Ping He ◽  
Shifeng Fang ◽  
Weiling Liu ◽  
Xinjie Yuan ◽  
...  

2015 ◽  
Vol 112 (30) ◽  
pp. 9299-9304 ◽  
Author(s):  
Miaogen Shen ◽  
Shilong Piao ◽  
Su-Jong Jeong ◽  
Liming Zhou ◽  
Zhenzhong Zeng ◽  
...  

In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.


2016 ◽  
Author(s):  
Xiaoxia Li ◽  
Eryuan Liang ◽  
Jozica Gricar ◽  
Sergio Rossi ◽  
Katarina Cufar ◽  
...  

ABSTRACTPhysiological and ecological mechanisms that define treelines are still debated. It is suggested that the absence of trees above the treeline is caused by the low temperature that limits growth. Thus, we raise the hypothesis that there is a critical minimum temperature (CTmin) preventing xylogenesis at treeline. We tested this hypothesis by examining weekly xylogenesis across three and four growing seasons in two natural Smith fir (Abies georgei var. smithii) treeline sites on the south-eastern Tibetan Plateau. Despite differences in the timing of cell differentiation among years, minimum air temperature was the dominant climatic variable associated with xylem growth; the critical minimum temperature (CTmin) for the onset and end of xylogenesis occurred at 0.7±0.4 °C. A process-based-modeled chronology of tree-ring formation using this CTmin was consistent with actual tree-ring data. This extremely low CTmin permits Smith fir growing at treeline to complete annual xylem production and maturation and provides both support and a mechanism for treeline formation.


Sign in / Sign up

Export Citation Format

Share Document