scholarly journals A Mechanistic Framework for Understanding the Effects of Climate Change on the Link Between Flowering and Fruiting Phenology

2021 ◽  
Vol 9 ◽  
Author(s):  
Manette E. Sandor ◽  
Clare E. Aslan ◽  
Liba Pejchar ◽  
Judith L. Bronstein

Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance.

2017 ◽  
Vol 13 (5) ◽  
pp. 20170175 ◽  
Author(s):  
Denon Start ◽  
Devin Kirk ◽  
Dylan Shea ◽  
Benjamin Gilbert

Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener , a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ripu M. Kunwar ◽  
Mina Lamichhane Pandey ◽  
Laxmi Mahat Kunwar ◽  
Ananta Bhandari

The impacts of climate change were severe on indigenous medicinal plant species and their dependent communities. The harvesting calendar and picking sites of these species were no longer coinciding and the changes were affecting harvesters’ and cultivators’ abilities to collect and use those species. Secondary sites: road-heads, wastelands, regenerated forests, and so forth, were being prioritized for collection and the nonindigenous medicinal plant species were being increasingly introduced into the medical repertoire as a substitution and to diversify the local medicinal stock. Acceptance and application of nonindigenous species and sites for livelihood and ethnopharmacopoeias with caution were considered as an important adaptation strategy. Findings on species and site specific accounts urged further researches on medicinal plants, ethnomedicine, and their interrelationship with impacts of climate change.


Author(s):  
Kenyon B. Mobley ◽  
Tutku Aykanat ◽  
Yann Czorlich ◽  
Andrew House ◽  
Johanna Kurko ◽  
...  

AbstractOver the past decades, Atlantic salmon (Salmo salar, Salmonidae) has emerged as a model system for sexual maturation research, owing to the high diversity of life history strategies, knowledge of trait genetic architecture, and their high economic value. The aim of this synthesis is to summarize the current state of knowledge concerning maturation in Atlantic salmon, outline knowledge gaps, and provide a roadmap for future work. We summarize the current state of knowledge: 1) maturation in Atlantic salmon takes place over the entire life cycle, starting as early as embryo development, 2) variation in the timing of maturation promotes diversity in life history strategies, 3) ecological and genetic factors influence maturation, 4) maturation processes are sex-specific and may have fitness consequences for each sex, 5) genomic studies have identified large-effect loci that influence maturation, 6) the brain-pituitary–gonadal axis regulates molecular and physiological processes of maturation, 7) maturation is a key component of fisheries, aquaculture, conservation, and management, and 8) climate change, fishing pressure, and other anthropogenic stressors likely have major effects on salmon maturation. In the future, maturation research should focus on a broader diversity of life history stages, including early embryonic development, the marine phase and return migration. We recommend studies combining ecological and genetic approaches will help disentangle the relative contributions of effects in different life history stages to maturation. Functional validation of large-effect loci should reveal how these genes influence maturation. Finally, continued research in maturation will improve our predictions concerning how salmon may adapt to fisheries, climate change, and other future challenges.


2018 ◽  
Vol 52 (3-4) ◽  
pp. 1413-1423 ◽  
Author(s):  
Alessandro Ferrarini ◽  
Mohammed H. S. A. Alsafran ◽  
Junhu Dai ◽  
Juha M. Alatalo

2017 ◽  
Vol 74 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Donovan A. Bell ◽  
Ryan P. Kovach ◽  
Scott C. Vulstek ◽  
John E. Joyce ◽  
David A. Tallmon

Differential climate-induced shifts in phenology can create mismatches between predators and prey, but few studies have examined predator–prey mismatch across multiple life-history stages. We used long-term data from a warming stream with shifting salmonid migration timings to quantify intra-annual migration synchrony between predatory Dolly Varden (Salvelinus malma) and Pacific salmon prey and examined how predator–prey synchrony has been influenced by climate change. We demonstrate that Dolly Varden have become increasingly mismatched with spring downstream migrations of abundant pink salmon (Oncorhynchus gorbuscha) juveniles. However, Dolly Varden have remained matched with fall upstream migrations of spawning Pacific salmon, including coho (Oncorhynchus kisutch), sockeye (Oncorhynchus nerka), and pink salmon. Downstream predator–prey migration synchrony decreased over time and with higher temperatures, particularly with pink salmon. In contrast, upstream migration synchrony was temporally stable and increased with rising temperatures. Differing trends in Dolly Varden predator–prey synchrony may be explained by the direct use of salmon to cue upstream migration, but not downstream migration. Overall, we show that climate change can have differing impacts on predator–prey synchrony across life-history stages.


2021 ◽  
Author(s):  
Somayeh Naghiloo ◽  
Jana Vamosi

Abstract Understanding the mechanisms underlying plant responses to climate change is an important step towards developing effective mitigation strategies. Polyploidy is an important evolutionary trait that can influence the capacity of plants to adapt to climate change. The environmental flexibility of polyploids suggests their resiliency to climate change, however, such hypotheses have not yet received empirical evidence. To understand how ploidy level may influence response to climate change, we modeled the current and future distribution of 54 Crataegus species under moderate to severe environments and compared the range change between diploids and polyploids.The majority of studied species are predicted to experience considerable range expansion. We found a negative interaction between ploidy and ecoregions in determining the response to climate change. In extreme environments polyploids are projected to experience a higher range expansion than diploids with climate change, while the opposite is true for moderate environments.The range expansion of Crataegus species can be attributed to their tolerance for a wide range of environmental conditions. Despite higher tolerance of polyploids to extreme environments, they do not necessarily outperform diploids in moderate environments, which can be attributed to the varying nature of species interactions along a stress gradient.


Sign in / Sign up

Export Citation Format

Share Document