scholarly journals Insect and Disease Disturbances Correlate With Reduced Carbon Sequestration in Forests of the Contiguous United States

2021 ◽  
Vol 4 ◽  
Author(s):  
Brendan R. Quirion ◽  
Grant M. Domke ◽  
Brian F. Walters ◽  
Gary M. Lovett ◽  
Joseph E. Fargione ◽  
...  

Major efforts are underway to harness the carbon sequestration capacity of forests to combat global climate change. However, tree damage and death associated with insect and disease disturbance can reduce this carbon sequestration capacity. We quantified average annual changes in live tree carbon accumulation associated with insect and disease disturbances utilizing the most recent (2001 – 2019) remeasurement data from National Forest Inventory plots in the contiguous United States. Forest plots recently impacted by insect disturbance sequestered on average 69% less carbon in live trees than plots with no recent disturbance, and plots recently impacted by disease disturbance sequestered on average 28% less carbon in live trees than plots with no recent disturbance. Nationally, we estimate that carbon sequestration by live trees, defined as the estimated average annual rate of above- and belowground carbon accumulation in live trees (diameter at breast height ≥ 2.54 cm) on forest land, has been reduced by 9.33 teragrams carbon per year (95% confidence interval: 7.11 to 11.58) in forests that have experienced recent insect disturbance and 3.49 teragrams carbon per year (95% confidence interval: 1.30 to 5.70) in forests that have experienced recent disease disturbance, for a total reduction of 12.83 teragrams carbon per year (95% confidence interval: 8.41 to 17.28). Strengthened international trade policies and phytosanitary standards as well as improved forest management have the potential to protect forests and their natural capacity to contribute to climate change mitigation.

2020 ◽  
Vol 117 (40) ◽  
pp. 24649-24651 ◽  
Author(s):  
Grant M. Domke ◽  
Sonja N. Oswalt ◽  
Brian F. Walters ◽  
Randall S. Morin

Several initiatives have been proposed to mitigate forest loss and climate change through tree planting as well as maintaining and restoring forest ecosystems. These initiatives have both inspired and been inspired by global assessments of tree and forest attributes and their contributions to offset carbon dioxide (CO2) emissions. Here we use data from more than 130,000 national forest inventory plots to describe the contribution of nearly 1.4 trillion trees on forestland in the conterminous United States to mitigate CO2 emissions and the potential to enhance carbon sequestration capacity on productive forestland. Forests and harvested wood products uptake the equivalent of more than 14% of economy-wide CO2 emissions in the United States annually, and there is potential to increase carbon sequestration capacity by ∼20% (−187.7 million metric tons [MMT] CO2 ±9.1 MMT CO2) per year by fully stocking all understocked productive forestland. However, there are challenges and opportunities to be considered with tree planting. We provide context and estimates from the United States to inform assessments of the potential contributions of forests in climate change mitigation associated with tree planting.


2020 ◽  
Author(s):  
Luke Andrews ◽  
James Rowson ◽  
Richard Payne ◽  
Simon Caporn ◽  
Nancy Dise ◽  
...  

<p>The effects of 21<sup>st</sup> century climate change are projected to be most severe in the northern hemisphere, where the majority of peatlands are located. Peatlands represent important long-term terrestrial stores of carbon (C), containing an estimated c.600-1055GT C, despite covering only 3% of total land area globally. In addition, pristine peatlands act as net sinks of atmospheric CO<sub>2</sub>, imparting a negative feedback mechanism cooling global climate, whilst simultaneously acting as sources of CO<sub>2</sub> and CH<sub>4</sub>. Peatlands remain net sinks of C as long as the rate of carbon sequestration exceeds that of decomposition. Projected changes in temperature, precipitation and other environmental variables threaten to disrupt this precarious balance, however, and the future direction of carbon feedback mechanisms are poorly understood, due to the complex nature of the peatland carbon cycle.</p><p> </p><p>Two methods are used in order to help understand future the carbon dynamics of peat bogs under climate change. These are experimental studies, which measure greenhouse gas fluxes under manipulated climatic and environmental conditions (warmer, drier), and palaeoecological studies, which examine the effects of past climate change upon carbon sequestration throughout the peat profile. However, both methods fundamentally contradict each other. Palaeoecological studies suggest that carbon accumulation increases during warming periods, whereas warming experiments observe greater carbon loss with increased temperature.</p><p> </p><p>The aim of this project is to link contemporary experimental and palaeoecological approaches to explain this discrepancy. This will be achieved by comparing greenhouse gas fluxes between plots which have been subjected to 10 years of passive warming and drought simulation at an experimental climate manipulation site on Cors Fochno, Ceredigion, Wales. Long term rates of carbon accumulation will be compared with net ecosystem contemporary carbon budgets from each plot. Surface samples from each plot will be analysed by a range of palaeoenvironmental proxies to test how well the climate manipulations are represented by each proxy. Finally, a high-resolution multi-proxy palaeoenvironmental reconstruction spanning the past 1000 years will be compared with reconstructions derived from short-cores from each plot covering the duration of the experiment from each treatment, to see how faithfully climate manipulation mirrors real periods of climate change.</p><p> </p><p>Understanding the future role of peatlands in future carbon sequestration and storage is of vital importance for modelling future climate change, in terms of both quantifying the potential ecosystem services peatlands may offer in mitigating the effects of climate change, as well as enhancing the predictive capabilities of global climate models. Currently, the uncertainty associated with peatland carbon cycling is such that peatlands are rarely included in global climate models.</p><p> </p>


2021 ◽  
Vol 4 (4-5) ◽  
pp. 266-276
Author(s):  
Pratap Naikwade

Carbon sequestration is one of the most important and highly recommended measures for mitigating climate change. Soil organic carbon (SOC) has potential to sequester the largest amount of carbon (C) for the longest time period in the midst of the organic C sinks in terrestrial ecosystems of the earth. In recent years, apprehension of the role of soils as sink for carbon on a wide-ranging scale has become dynamic. From last 150 years, encroachment of trees and shrubs into grasslands and the ‘thicketization’ of savannas have been reported and is a global phenomenon. One possibly beneficial effect could be that the shrub and tree-dominated ecosystems will sequester more carbon and will be a buffer for elevated atmospheric carbon dioxide (CO2) levels. The question of what is impact of woody encroachment on soil carbon balance of an ecosystem has proved difficult to answer, and the results remain debatable. The magnitude and pattern of changes in the SOC with woody encroachment are exceedingly abstruse and varies from significant increases, to significant decreases to no net change in SOC. Impact of wood plant encroachment on carbon sequestration is discussed in this paper considering various studies with different results so it will lead to better understanding of the complex phenomenon. SOC sequestration is effective greenhouse gas mitigation strategy and a vital ecosystem service. Increasing SOC may helpful to mitigate negative effects of growing concentration of CO2 in atmosphere and may be advantageous in decelerating or reversal in global climate change rate.


2011 ◽  
Vol 11 (1) ◽  
pp. 2183-2231 ◽  
Author(s):  
Y. F. Lam ◽  
J. S. Fu ◽  
S. Wu ◽  
L. J. Mickley

Abstract. Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases) to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10% or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8) over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40% lower than the one from the present-year condition, of which 60% of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10% or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5% or 1.0 μg/m3 in the Southeast region.


Author(s):  
Michael B. McElroy

The discussion in chapter 2 addressed what might be described as a microview of the US energy economy— how we use energy as individuals, how we measure our personal consumption, and how we pay for it. We turn attention now to a more expansive perspective— the use of energy on a national scale, including a discussion of associated economic benefits and costs. We focus specifically on implications for emissions of the greenhouse gas CO2. If we are to take the issue of human- induced climate change seriously— and I do— we will be obliged to adjust our energy system markedly to reduce emissions of this gas, the most important agent for human- induced climate change. And we will need to do it sooner rather than later. This chapter will underscore the magnitude of the challenge we face if we are to successfully chart the course to a more sustainable climate- energy future. We turn later to strategies that might accelerate our progress toward this objective.We elected in this volume to focus on the present and potential future of the energy economy of the United States. It is important to recognize that the fate of the global climate system will depend not just on what happens in the United States but also to an increasing extent on what comes to pass in other large industrial economies. China surpassed the United States as the largest national emitter of CO2 in 2006. The United States and China together were responsible in 2012 for more than 42% of total global emissions. Add Russia, India, Japan, Germany, Canada, United Kingdom, South Korea, and Iran to the mix (the other members of the top 10 emitting countries ordered in terms of their relative contributions), and we can account for more than 60% of the global total. Given the importance of China to the global CO2 economy (more than 26% of the present global total and likely to increase significantly in the near term), I decided that it would be instructive to include here at least some discussion of the situation in China— to elaborate what the energy economies of China and the United States have in common, outlining at the same time the factors and challenges that set them apart.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


Sign in / Sign up

Export Citation Format

Share Document