scholarly journals Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology “Genotyping-by-Sequencing” Platform (DArTseq)

2017 ◽  
Vol 8 ◽  
Author(s):  
Leticia A. Egea ◽  
Rosa Mérida-García ◽  
Andrzej Kilian ◽  
Pilar Hernandez ◽  
Gabriel Dorado
Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 154 ◽  
Author(s):  
Lucia Lioi ◽  
Diana L. Zuluaga ◽  
Stefano Pavan ◽  
Gabriella Sonnante

The common bean (Phaseolus vulgaris L.) is one of the main legumes worldwide and represents a valuable source of nutrients. Independent domestication events in the Americas led to the formation of two cultivated genepools, namely Mesoamerican and Andean, to which European material has been brought back. In this study, Italian common bean landraces were analyzed for their genetic diversity and structure, using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS) technology. After filtering, 11,866 SNPs were obtained and 798 markers, pruned for linkage disequilibrium, were used for structure analysis. The most probable number of subpopulations (K) was two, consistent with the presence of the two genepools, identified through the phaseolin diagnostic marker. Some landraces were admixed, suggesting probable hybridization events between Mesoamerican and Andean material. When increasing the number of possible Ks, the Andean germplasm appeared to be structured in two or three subgroups. The subdivision within the Andean material was also observed in a principal coordinate analysis (PCoA) plot and a dendrogram based on genetic distances. The Mesoamerican landraces showed a higher level of genetic diversity compared to the Andean landraces. Calculation of the fixation index (FST) at individual SNPs between the Mesoamerican and Andean genepools and within the Andean genepool evidenced clusters of highly divergent loci in specific chromosomal regions. This work may help to preserve landraces of the common bean from genetic erosion, and could represent a starting point for the identification of interesting traits that determine plant adaptation.


2021 ◽  
Author(s):  
Maya Peringottillam ◽  
Smitha Kunhiraman Vasumathy ◽  
Hari Krishna Kumar ◽  
Manickavelu Alagu

Abstract Researchers stand at the vanguard of advancement and application of next-generation sequencing technology for creating opportunities to guide more realistic and applicable strategies for the sustainable management of genetically diverse rice resources. This study is a pioneering effort where GBS-SNP markers were employed to assess the tremendous genetic diversity and structure of rice landrace collections from northern Kerala. Kerala holds an immense diversity of rice landraces that encountered selection pressures of environmental heterogeneity, biotic and abiotic stresses, however competent rather provide good yields, whereby drawing the attention of the rice breeding sector. The population structure and diversity analyses separated the accessions into three distinct subpopulations with a huge amount of genetic variation within subpopulations. Nei’s genetic distance analysis confirmed the existence of strong genetic differentiation among rice landrace populations. The values of FST and Nm established the farmers’ effort to preserve the genetic purity of rice landraces despite the extensive seed exchange programs across the states of India. Moreover, this low level of gene flow among subpopulations could provide the opportunity for well-adapted combinations of genes to be established by natural selection. The clustering pattern based on SNP markers furnished sufficient knowledge in identifying rice genotypes that eliminates the likelihood of duplication among indigenous cultivars. Similar clustering patterns of genotypes revealed shared genetic characters among them. Collectively these analyses can be used to completely understand the population of rice landraces in Kerala while contributing insights toward the evolution and selective pressures underlying these unique landraces.


2017 ◽  
Vol 64 (7) ◽  
pp. 1775-1788 ◽  
Author(s):  
Gabriel Dequigiovani ◽  
Santiago Linorio Ferreyra Ramos ◽  
Alessandro Alves-Pereira ◽  
Eliane Gomes Fabri ◽  
Paulo Roberto Nogueira Carvalho ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Hanli Dang ◽  
Tao Zhang ◽  
Yuanyuan Li ◽  
Guifang Li ◽  
Li Zhuang ◽  
...  

Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p < 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p < 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p < 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.


2015 ◽  
Vol 37 (4) ◽  
pp. 984-992
Author(s):  
ELISA FERREIRA MOURA ◽  
MARIA DO SOCORRO PADILHA DE OLIVEIRA ◽  
DIEHGO TULOZA DA SILVA ◽  
LÍGIA CRISTINE GONÇALVES PONTES

ABSTRACT The aim of this study was to evaluate the genetic diversity and structure in the germoplasm of Oenocarpus mapora conserved at Eastern Amazon. Thus, 88 individuals were genotyped with five microsatellite loci. These individuals belong to 24 accessions that were sampled in eight sample places of three Brazilian Amazon states conserved at the Active Germplasm Bank (AGB) of Embrapa Eastern Amazon. All loci were polymorphic and they generated 85 alleles with an average of 17 alleles per loci. Total genetic diversity (HE) was 0.48. Sample places were considered genetically distinct, with ?p = 0.354. The analysis of molecular variance (AMOVA) identified that the genetic portion among areas was of 36.14% and within 63.86%. The Nei distances varied from 0.091 between Abaetetuba and Santo Antônio do Tauá, both in the state of Pará (PA), to 4.18, between Parintins, AM and Rio Branco, AC. By means of Bayesian analysis, it was identified nine clusters that compose the accessions of the germplasm bank, with different distributions among individuals. The study showed high fixation rates per sample area, which indicates that there may have been significant inbreeding or crossing among parental individuals. It suggests that future samples should be made of different plants in natural populations. Even though, it was verified that there is considerable genetic variation in the germplasm of O. mapora.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 227
Author(s):  
Mizuho Nakamura ◽  
Satoshi Nanami ◽  
Seiya Okuno ◽  
Shun K. Hirota ◽  
Ayumi Matsuo ◽  
...  

Research Highlights: genetic diversity in populations were compared among related shrub species with different reproductive systems. Background and Objectives: Lindera species are dioecious trees or shrubs that produce seeds by mating of males and females. To evaluate the importance of genetic diversity for the persistence of natural populations, we compared genetic information among four Lindera species in Japan. Three are dioecious shrubs (Lindera praecox, Lindera umbellata, and Lindera obtusiloba) that produce seeds by sexual reproduction. The remaining species, Lindera glauca, reproduces by apomixis; only female plants are found in Japan. Materials and Methods: all four species were sampled across a wide geographic area, from Tohoku to Kyushu, Japan. Single nucleotide polymorphisms (SNPs) were detected by multiplexed ISSR genotyping by sequencing (MIG-seq) and the resulting genetic diversity parameters were compared among populations. Results: in all sexually reproducing species, the values of observed heterozygosity were close to the expected ones and the inbreeding coefficients were nearly 0. These results were supposed to be caused by their obligate outcrossing. The genetic difference increased, in ascending order, between a mother plant and its seeds, within populations, and across geographic space. We observed a substantial geographic component in the genetic structure of these species. For L. glauca, the genetic difference between a mother and its seeds, within populations, and across space were not significantly different from what would be expected from PCR errors. Genetic diversity within and among populations of L. glauca was extremely low. Conclusions: apomixis has the advantage of being able to found populations from a single individual, without mating, which may outweigh the disadvantages associated with the extremely low genetic diversity of L. glauca. This may explain why this species is so widely distributed in Japan. Provided that the current genotypes remain suited to environmental conditions, L. glauca may not be constrained by its limited genetic diversity.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 752-760
Author(s):  
Meriem Aoun ◽  
James A. Kolmer ◽  
Matthew Breiland ◽  
Jonathan Richards ◽  
Robert S. Brueggeman ◽  
...  

Leaf rust, caused by Puccinia triticina Erikss., is globally the most widespread rust of wheat. Populations of P. triticina are highly diverse for virulence, with many different races found annually. The genetic diversity of P. triticina populations has been previously assessed using different types of DNA markers. Genotyping technologies that provide a higher density of markers distributed across the genome will be more powerful for analysis of genetic and phylogenetic relationships in P. triticina populations. In this study, we utilized restriction-associated DNA (RAD) genotyping-by-sequencing (GBS) adapted for the Ion Torrent sequencing platform for the study of population diversity in P. triticina. A collection of 102 isolates, collected mainly from tetraploid and hexaploid wheat, was used. The virulence phenotypes of the isolates were determined on 20 lines of Thatcher wheat near isogenic for leaf rust resistance genes. Seven races were found among 57 isolates collected from tetraploid wheat, and 21 races were observed among 40 hexaploid wheat type isolates. This is the first study to report durum wheat virulent races to Lr3bg in Tunisia, Lr14a in Morocco, and Lr3bg and Lr28 in Mexico. Ethiopian isolates with high virulence to durum wheat but avirulent on Thatcher (hexaploid wheat) were tested for virulence on a set of durum (tetraploid) differentials. A subset of 30 isolates representing most of the virulence phenotypes in the 102 isolates were genotyped using RAD-GBS. Phylogenetic analysis of 30 isolates using 2,125 single nucleotide polymorphism (SNP) markers showed nine distinct clusters. There was a general correlation between virulence phenotypes and SNP genotypes. The high bootstrap values between clusters of isolates in the phylogenetic tree indicated that RAD-GBS can be used as a new genotyping tool that is fast, simple, high throughput, cost effective, and provides a sufficient number of markers for the study of genetic diversity in P. triticina. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 144
Author(s):  
Nohra Castillo Rodríguez ◽  
Xingbo Wu ◽  
María Isabel Chacón ◽  
Luz Marina Melgarejo ◽  
Matthew Wohlgemuth Blair

Orphan crops, which include many of the tropical fruit species used in the juice industry, lack genomic resources and breeding efforts. Typical of this dilemma is the lack of commercial cultivars of purple passion fruit, Passiflora edulis f. edulis, and of information on the genetic resources of its substantial semiwild gene pool. In this study, we develop single-nucleotide polymorphism (SNP) markers for the species and show that the genetic diversity of this fruit crop has been reduced because of selection for cultivated genotypes compared to the semiwild landraces in its center of diversity. A specific objective of the present study was to determine the genetic diversity of cultivars, genebank accession, and landraces through genotyping by sequencing (GBS) and to conduct molecular evaluation of a broad collection for the species P. edulis from a source country, Colombia. We included control genotypes of yellow passion fruit, P. edulis f. flavicarpa. The goal was to evaluate differences between fruit types and compare landraces and genebank accessions from in situ accessions collected from farmers. In total, 3820 SNPs were identified as informative for this diversity study. However, the majority distinguished yellow and purple passion fruit, with 966 SNPs useful in purple passion fruits alone. In the population structure analysis, purple passion fruits were very distinct from the yellow ones. The results for purple passion fruits alone showed reduced diversity for the commercial cultivars while highlighting the higher diversity found among landraces from wild or semi-wild conditions. These landraces had higher heterozygosity, polymorphism, and overall genetic diversity. The implications for genetics and breeding as well as evolution and ecology of purple passion fruits based on the extant landrace diversity are discussed with consideration of manual or pollinator-assisted hybridization of this species.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


Sign in / Sign up

Export Citation Format

Share Document