scholarly journals Feature Selection Using Approximate Conditional Entropy Based on Fuzzy Information Granule for Gene Expression Data Classification

2021 ◽  
Vol 12 ◽  
Author(s):  
Hengyi Zhang

Classification is widely used in gene expression data analysis. Feature selection is usually performed before classification because of the large number of genes and the small sample size in gene expression data. In this article, a novel feature selection algorithm using approximate conditional entropy based on fuzzy information granule is proposed, and the correctness of the method is proved by the monotonicity of entropy. Firstly, the fuzzy relation matrix is established by Laplacian kernel. Secondly, the approximately equal relation on fuzzy sets is defined. And then, the approximate conditional entropy based on fuzzy information granule and the importance of internal attributes are defined. Approximate conditional entropy can measure the uncertainty of knowledge from two different perspectives of information and algebra theory. Finally, the greedy algorithm based on the approximate conditional entropy is designed for feature selection. Experimental results for six large-scale gene datasets show that our algorithm not only greatly reduces the dimension of the gene datasets, but also is superior to five state-of-the-art algorithms in terms of classification accuracy.

2019 ◽  
Vol 21 (9) ◽  
pp. 631-645 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Kabir ◽  
Zakir Ali ◽  
Muhammad Arif ◽  
Farman Ali ◽  
...  

Aim and Objective: Cancer is a dangerous disease worldwide, caused by somatic mutations in the genome. Diagnosis of this deadly disease at an early stage is exceptionally new clinical application of microarray data. In DNA microarray technology, gene expression data have a high dimension with small sample size. Therefore, the development of efficient and robust feature selection methods is indispensable that identify a small set of genes to achieve better classification performance. Materials and Methods: In this study, we developed a hybrid feature selection method that integrates correlation-based feature selection (CFS) and Multi-Objective Evolutionary Algorithm (MOEA) approaches which select the highly informative genes. The hybrid model with Redial base function neural network (RBFNN) classifier has been evaluated on 11 benchmark gene expression datasets by employing a 10-fold cross-validation test. Results: The experimental results are compared with seven conventional-based feature selection and other methods in the literature, which shows that our approach owned the obvious merits in the aspect of classification accuracy ratio and some genes selected by extensive comparing with other methods. Conclusion: Our proposed CFS-MOEA algorithm attained up to 100% classification accuracy for six out of eleven datasets with a minimal sized predictive gene subset.


Author(s):  
WEIXIANG LIU ◽  
KEHONG YUAN ◽  
JIAN WU ◽  
DATIAN YE ◽  
ZHEN JI ◽  
...  

Classification of gene expression samples is a core task in microarray data analysis. How to reduce thousands of genes and to select a suitable classifier are two key issues for gene expression data classification. This paper introduces a framework on combining both feature extraction and classifier simultaneously. Considering the non-negativity, high dimensionality and small sample size, we apply a discriminative mixture model which is designed for non-negative gene express data classification via non-negative matrix factorization (NMF) for dimension reduction. In order to enhance the sparseness of training data for fast learning of the mixture model, a generalized NMF is also adopted. Experimental results on several real gene expression datasets show that the classification accuracy, stability and decision quality can be significantly improved by using the generalized method, and the proposed method can give better performance than some previous reported results on the same datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lianxin Zhong ◽  
Qingfang Meng ◽  
Yuehui Chen

The correct classification of cancer subtypes is of great significance for the in-depth study of cancer pathogenesis and the realization of accurate treatment for cancer patients. In recent years, the classification of cancer subtypes using deep neural networks and gene expression data has become a hot topic. However, most classifiers may face the challenges of overfitting and low classification accuracy when dealing with small sample size and high-dimensional biological data. In this paper, the Cascade Flexible Neural Forest (CFNForest) Model was proposed to accomplish cancer subtype classification. CFNForest extended the traditional flexible neural tree structure to FNT Group Forest exploiting a bagging ensemble strategy and could automatically generate the model’s structure and parameters. In order to deepen the FNT Group Forest without introducing new hyperparameters, the multilayer cascade framework was exploited to design the FNT Group Forest model, which transformed features between levels and improved the performance of the model. The proposed CFNForest model also improved the operational efficiency and the robustness of the model by sample selection mechanism between layers and setting different weights for the output of each layer. To accomplish cancer subtype classification, FNT Group Forest with different feature sets was used to enrich the structural diversity of the model, which make it more suitable for processing small sample size datasets. The experiments on RNA-seq gene expression data showed that CFNForest effectively improves the accuracy of cancer subtype classification. The classification results have good robustness.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lianxin Zhong ◽  
Qingfang Meng ◽  
Yuehui Chen ◽  
Lei Du ◽  
Peng Wu

Abstract Background Correctly classifying the subtypes of cancer is of great significance for the in-depth study of cancer pathogenesis and the realization of personalized treatment for cancer patients. In recent years, classification of cancer subtypes using deep neural networks and gene expression data has gradually become a research hotspot. However, most classifiers may face overfitting and low classification accuracy when dealing with small sample size and high-dimensional biology data. Results In this paper, a laminar augmented cascading flexible neural forest (LACFNForest) model was proposed to complete the classification of cancer subtypes. This model is a cascading flexible neural forest using deep flexible neural forest (DFNForest) as the base classifier. A hierarchical broadening ensemble method was proposed, which ensures the robustness of classification results and avoids the waste of model structure and function as much as possible. We also introduced an output judgment mechanism to each layer of the forest to reduce the computational complexity of the model. The deep neural forest was extended to the densely connected deep neural forest to improve the prediction results. The experiments on RNA-seq gene expression data showed that LACFNForest has better performance in the classification of cancer subtypes compared to the conventional methods. Conclusion The LACFNForest model effectively improves the accuracy of cancer subtype classification with good robustness. It provides a new approach for the ensemble learning of classifiers in terms of structural design.


In the field of microarray gene expression research, the high dimension of the features with a comparatively small sample size of these data became necessary for the development of a robust and efficient feature selection method in order to perform classification task more precisely on gene expression data. We propose the hybrid feature selection (mRMRAGA) approach in this paper, which combines the minimum redundancy and maximum relevance (mRMR) with the adaptive genetic algorithm (AGA). The mRMR method is frequently used to identify the characteristics more accurately for gene and its phenotypes. Then their relevance is narrowed down which is described in pairing with its relevant feature selection. This approach is known as Minimum Redundancy and Maximum Relevance. The Genetic Algorithm (GA) has been propelled with the procedure of natural selection and it is based on heuristic search method. And the adaptive genetic algorithm is improvised one which gives better performance. We have conducted an experiment on four benchmarked dataset using our proposed approach and then classified using four well-known classification approaches. The accuracy was measured and observed that it gives better performance compared to the other conventional feature selection methods.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Farzana Kabir Ahmad

Deoxyribonucleic acid (DNA) microarray technology is the recent invention that provided colossal opportunities to measure a large scale of gene expressions simultaneously. However, interpreting large scale of gene expression data remain a challenging issue due to their innate nature of “high dimensional low sample size”. Microarray data mainly involved thousands of genes, n in a very small size sample, p which complicates the data analysis process. For such a reason, feature selection methods also known as gene selection methods have become apparently need to select significant genes that present the maximum discriminative power between cancerous and normal tissues. Feature selection methods can be structured into three basic factions; a) filter methods; b) wrapper methods and c) embedded methods. Among these methods, filter gene selection methods provide easy way to calculate the informative genes and can simplify reduce the large scale microarray datasets. Although filter based gene selection techniques have been commonly used in analyzing microarray dataset, these techniques have been tested separately in different studies. Therefore, this study aims to investigate and compare the effectiveness of these four popular filter gene selection methods namely Signal-to-Noise ratio (SNR), Fisher Criterion (FC), Information Gain (IG) and t-Test in selecting informative genes that can distinguish cancer and normal tissues. In this experiment, common classifiers, Support Vector Machine (SVM) is used to train the selected genes. These gene selection methods are tested on three large scales of gene expression datasets, namely breast cancer dataset, colon dataset, and lung dataset. This study has discovered that IG and SNR are more suitable to be used with SVM. Furthermore, this study has shown SVM performance remained moderately unaffected unless a very small size of genes was selected.


2018 ◽  
Vol 19 (11) ◽  
pp. 3398
Author(s):  
Yuanting Yan ◽  
Tao Dai ◽  
Meili Yang ◽  
Xiuquan Du ◽  
Yiwen Zhang ◽  
...  

(1) Background: Gene-expression data usually contain missing values (MVs). Numerous methods focused on how to estimate MVs have been proposed in the past few years. Recent studies show that those imputation algorithms made little difference in classification. Thus, some scholars believe that how to select the informative genes for downstream classification is more important than how to impute MVs. However, most feature-selection (FS) algorithms need beforehand imputation, and the impact of beforehand MV imputation on downstream FS performance is seldom considered. (2) Method: A modified chi-square test-based FS is introduced for gene-expression data. To deal with the challenge of a small sample size of gene-expression data, a heuristic method called recursive element aggregation is proposed in this study. Our approach can directly handle incomplete data without any imputation methods or missing-data assumptions. The most informative genes can be selected through a threshold. After that, the best-first search strategy is utilized to find optimal feature subsets for classification. (3) Results: We compare our method with several FS algorithms. Evaluation is performed on twelve original incomplete cancer gene-expression datasets. We demonstrate that MV imputation on an incomplete dataset impacts subsequent FS in terms of classification tasks. Through directly conducting FS on incomplete data, our method can avoid potential disturbances on subsequent FS procedures caused by MV imputation. An experiment on small, round blue cell tumor (SRBCT) dataset showed that our method found additional genes besides many common genes with the two compared existing methods.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zi-Yi Yang ◽  
Xiao-Ying Liu ◽  
Jun Shu ◽  
Hui Zhang ◽  
Yan-Qiong Ren ◽  
...  

Abstract The widespread applications in microarray technology have produced the vast quantity of publicly available gene expression datasets. However, analysis of gene expression data using biostatistics and machine learning approaches is a challenging task due to (1) high noise; (2) small sample size with high dimensionality; (3) batch effects and (4) low reproducibility of significant biomarkers. These issues reveal the complexity of gene expression data, thus significantly obstructing microarray technology in clinical applications. The integrative analysis offers an opportunity to address these issues and provides a more comprehensive understanding of the biological systems, but current methods have several limitations. This work leverages state of the art machine learning development for multiple gene expression datasets integration, classification and identification of significant biomarkers. We design a novel integrative framework, MVIAm - Multi-View based Integrative Analysis of microarray data for identifying biomarkers. It applies multiple cross-platform normalization methods to aggregate multiple datasets into a multi-view dataset and utilizes a robust learning mechanism Multi-View Self-Paced Learning (MVSPL) for gene selection in cancer classification problems. We demonstrate the capabilities of MVIAm using simulated data and studies of breast cancer and lung cancer, it can be applied flexibly and is an effective tool for facing the four challenges of gene expression data analysis. Our proposed model makes microarray integrative analysis more systematic and expands its range of applications.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Seonghun Kim ◽  
Seockhun Bae ◽  
Yinhua Piao ◽  
Kyuri Jo

Genomic profiles of cancer patients such as gene expression have become a major source to predict responses to drugs in the era of personalized medicine. As large-scale drug screening data with cancer cell lines are available, a number of computational methods have been developed for drug response prediction. However, few methods incorporate both gene expression data and the biological network, which can harbor essential information about the underlying process of the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature selection of drug-related genes, and the GCN model detects the local features such as subnetworks of genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of DrugGCN using biological data showing its high prediction accuracy among the competing methods.


Sign in / Sign up

Export Citation Format

Share Document