scholarly journals Identification of a Competing Endogenous RNA Network Related to Immune Signature in Lung Adenocarcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Zhu ◽  
Yong Yu ◽  
Jun Liu ◽  
Kaiming Ren

BackgroundThe establishment of immunotherapy has led to a new era in oncotherapy. But the signature of immune-related genes (IRGs) in LUAD remains to be elucidated. Here we use integrated analysis to identify IRGs roles in immune signature and detect their relationship with competing endogenous RNA (ceRNA) networks in LUAD progression.MethodsBy analyzing the RNA-seq data from different platforms, we recognized the differentially expressed genes (DEGs) of each platform and screened out the top 20 hub IRGs related to immune responses. Then, we applied the CIBERSORT algorithm to explore the landscape of tumor-infiltrating immune cells (TILs) in LUAD and their connection with hub genes. Next, we predicted and validated the upstream miRNAs and lncRNAs according to their expression and prognostic roles. Finally, we constructed and validated an immune-related ceRNA network by co-expression analysis.ResultsA total of 71 IRGs were identified among 248 DEGs, which play key roles in immune responses. CIBERSORT analysis showed that six hub genes were closely related to TILs, such as SPP1 and naive B cells (R = −0.17), TEK and resting mast cells (R = 0.37). Stepwise prediction and validation from mRNA to lncRNA, including 6 hub genes, 5 miRNAs, and 9 lncRNAs, were applied to construct a ceRNA network. Ultimately, we confirmed the TMPO-AS1/miR-126-5p/SPP1 and CARD8-AS1/miR-21-5p/TEK as immune-related ceRNA networks in LUAD progression.ConclusionWe elucidated two immune-related ceRNA networks in LUAD progression, which can be considered as immunotherapy targets for this disease.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuqiang Zu ◽  
Peng Liu ◽  
Huaitao Wang ◽  
Ting Zhu ◽  
Jian Sun ◽  
...  

Abstract Background It is well acknowledged that cancer-related pathways play pivotal roles in the progression of pancreatic cancer (PC). Employing Integrated analysis, we aim to identify the pathway-related ceRNA network associated with PC progression. Methods We divided eight GEO datasets into three groups according to their platform, and combined TCGA and GTEx databases as a group. Additionally, we screened out the differentially expressed genes (DEGs) and performed functional enrichment analysis in each group, and recognized the top hub genes in the most enriched pathway. Furthermore, the upstream of miRNAs and lncRNAs were predicted and validated according to their expression and prognostic roles. Finally, the co-expression analysis was applied to identify a pathway-related ceRNA network in the progression of PC. Results A total of 51 significant pathways that common enriched in all groups were spotted. Enrichment analysis indicated that pathway in cancer was greatly linked with tumor formation and progression. Next, the top 20 hug genes in this pathway were recognized, and stepwise prediction and validation from mRNA to lncRNA, including 11 hub genes, 4 key miRNAs, and 2 key lncRNAs, were applied to identify a meaningful ceRNA network according to ceRNA rules. Ultimately, we identified the PVT1/miR-20b/CCND1 axis as a promising pathway-related ceRNA axis in the progression of PC. Conclusion Overall, we elucidate the pathway-related ceRNA regulatory network of PVT1/miR-20b/CCND1 in the progression of PC, which can be considered as therapeutic targets and encouraging prognostic biomarkers for PC.


2020 ◽  
Author(s):  
Fuqiang Zu ◽  
Peng Liu ◽  
Huaitao Wang ◽  
Ting Zhu ◽  
Jian Sun ◽  
...  

Abstract Background: It is well acknowledged that cancer-related pathways play pivotal roles in the progression of pancreatic cancer (PC). Employing Integrated analysis, we aim to identify the pathway-related ceRNA network associated with PC progression.Methods: We divided eight GEO datasets into three groups according to their platform, and combined TCGA and GTEx databases as a group. Additionally, we screened out the differentially expressed genes (DEGs) and performed functional enrichment analysis in each group, and recognized the top hub genes in the most enriched pathway. Furthermore, the upstream of miRNAs and lncRNAs were predicted and validated according to their expression and prognostic roles. Finally, the co-expression analysis was applied to identify a pathway-related ceRNA network in the progression of PC.Results: A total of 51 significant pathways that common enriched in all groups were spotted. Enrichment analysis indicated that pathway in cancer was greatly linked with tumor formation and progression. Next, the top 20 hug genes in this pathway were recognized, and stepwise prediction and validation from mRNA to lncRNA, including 11 hub genes, 4 key miRNAs, and 2 key lncRNAs, were applied to identify a meaningful ceRNA network according to ceRNA rules. Ultimately, we identified the PVT1/miR-20b-/CCND1 axis as a promising pathway-related ceRNA axis in the progression of PC.Conclusion: Overall, we elucidate the pathway-related ceRNA regulatory network of PVT1/miR-20b-/CCND1 in the progression of PC, which can be considered as therapeutic targets and encouraging prognostic biomarkers for PC.


2020 ◽  
Author(s):  
Fuqiang Zu ◽  
Peng Liu ◽  
Huaitao Wang ◽  
Ting Zhu ◽  
Jian Sun ◽  
...  

Abstract Background: It is well acknowledged that cancer-related pathways play pivotal roles in the progression of pancreatic cancer (PC). Employing Integrated analysis, we aim to identify the pathway-related ceRNA network associated with PC progression.Methods: We divided eight GEO datasets into three groups according to their platform, and combined TCGA and GTEx databases as a group. Additionally, we screened out the differentially expressed genes (DEGs) and performed functional enrichment analysis in each group, and recognized the top hub genes in the most enriched pathway. Furthermore, the upstream of miRNAs and lncRNAs were predicted and validated according to their expression and prognostic roles. Finally, the co-expression analysis was applied to identify a pathway-related ceRNA network in the progression of PC.Results: A total of 51 significant pathways that common enriched in all groups were spotted. Enrichment analysis indicated that pathway in cancer was greatly linked with tumor formation and progression. Next, the top 20 hug genes in this pathway were recognized, and stepwise prediction and validation from mRNA to lncRNA, including 11 hub genes, 4 key miRNAs, and 2 key lncRNAs, were applied to identify a meaningful ceRNA network according to ceRNA rules. Ultimately, we identified the PVT1/miR-20b-/CCND1 axis as a promising pathway-related ceRNA axis in the progression of PC.Conclusion: Overall, we elucidate the pathway-related ceRNA regulatory network of PVT1/miR-20b-/CCND1 in the progression of PC, which can be considered as therapeutic targets and encouraging prognostic biomarkers for PC.


2020 ◽  
Author(s):  
Xiaodong Tan ◽  
Fuqiang Zu ◽  
Peng Liu ◽  
Huaitao Wang ◽  
Ting Zhu ◽  
...  

Abstract Background It is well acknowledged that cancer-related pathways play pivotal roles in the progression of pancreatic cancer (PC). Employing multi-omics analysis, we aim to identify the pathway-related ceRNA network associated with PC progression. Methods We divided eight GEO datasets into three groups according to their platform, and combined TCGA and GTEx databases as a group. Additionally, we screened out the differentially expressed genes (DEGs) and performed functional enrichment analysis in each group, and recognized the top hub genes in the most enriched pathway. Furthermore, the upstream of miRNAs and lncRNAs were predicted and validated according to their expression and prognostic roles. Finally, the co-expression analysis was applied to identify a pathway-related ceRNA network in the progression of PC. Results A total of 51 significant pathways that common enriched in all groups were spotted. Enrichment analysis indicated that pathway in cancer was greatly linked with tumor formation and progression. Next, the top 20 hug genes in this pathway were recognized, and stepwise prediction and validation from mRNA to lncRNA, including 11 hub genes, 4 key miRNAs, and 2 key lncRNAs, were applied to identify a meaningful ceRNA network according to ceRNA rules. Ultimately, we identified the PVT1/miR-20b-/CCND1 axis as a promising pathway-related ceRNA axis in the progression of PC. Conclusion Overall, we elucidate the pathway-related ceRNA regulatory network of PVT1/miR-20b-/CCND1 in the progression of PC, which can be considered as therapeutic targets and encouraging prognostic biomarkers for PC.


Epigenomics ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 1501-1518 ◽  
Author(s):  
Guansheng Zhong ◽  
Weiyang Lou ◽  
Minya Yao ◽  
Chengyong Du ◽  
Haiyan Wei ◽  
...  

Aim: To identify novel competing endogenous RNA (ceRNA) network related to patients prognosis in breast cancer. Materials & methods: Dysregulated mRNA based on intersection of three Gene Expression Omnibus and The Cancer Genome Atlas datasets were analyzed by bioinformatics. Results: In total 72 upregulated and 208 downregulated genes were identified. Functional analysis showed that some pathways related to cancer were significantly enriched. By means of stepwise reverse prediction and validation from mRNA to lncRNA, 19 hub genes, nine key miRNA and four key lncRNAs were identified by expression and survival analysis. Ultimately, the coexpression analysis identified RRM2-let-7a-5p- SNHG16/ MAL2 as key ceRNA subnetwork associated with prognosis of breast cancer. Conclusion: We successfully constructed a novel ceRNA network, among which each component was significantly associated with breast cancer prognosis.


2019 ◽  
Vol 10 (14) ◽  
pp. 3267-3283 ◽  
Author(s):  
Xiwen Liao ◽  
Xiangkun Wang ◽  
Ketuan Huang ◽  
Chuangye Han ◽  
Jianlong Deng ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Chaowang Lan ◽  
Hui Peng ◽  
Gyorgy Hutvagner ◽  
Jinyan Li

Abstract Background A long noncoding RNA (lncRNA) can act as a competing endogenous RNA (ceRNA) to compete with an mRNA for binding to the same miRNA. Such an interplay between the lncRNA, miRNA, and mRNA is called a ceRNA crosstalk. As an miRNA may have multiple lncRNA targets and multiple mRNA targets, connecting all the ceRNA crosstalks mediated by the same miRNA forms a ceRNA network. Methods have been developed to construct ceRNA networks in the literature. However, these methods have limits because they have not explored the expression characteristics of total RNAs. Results We proposed a novel method for constructing ceRNA networks and applied it to a paired RNA-seq data set. The first step of the method takes a competition regulation mechanism to derive candidate ceRNA crosstalks. Second, the method combines a competition rule and pointwise mutual information to compute a competition score for each candidate ceRNA crosstalk. Then, ceRNA crosstalks which have significant competition scores are selected to construct the ceRNA network. The key idea, pointwise mutual information, is ideally suitable for measuring the complex point-to-point relationships embedded in the ceRNA networks. Conclusion Computational experiments and results demonstrate that the ceRNA networks can capture important regulatory mechanism of breast cancer, and have also revealed new insights into the treatment of breast cancer. The proposed method can be directly applied to other RNA-seq data sets for deeper disease understanding.


2020 ◽  
Vol 9 (3) ◽  
pp. 90-98 ◽  
Author(s):  
Haitao Chen ◽  
Liaobin Chen

Aims This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. Methods Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. Results We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and normal knee cartilage. A total of 75 dysregulated lncRNA-miRNA interactions and 711 dysregulated miRNA-mRNA interactions were obtained in the ceRNA network, including ten DElncRNAs, 69 miRNAs, and 72 DEmRNAs. Similarly, 1,330 dysregulated lncRNA-mRNA interactions were used to construct the co-expression network, which included ten lncRNAs and 407 mRNAs. We finally identified seven hub lncRNAs, named MIR210HG, HCP5, LINC00313, LINC00654, LINC00839, TBC1D3P1-DHX40P1, and ISM1-AS1. Subsequent enrichment analysis elucidated that these lncRNAs regulated extracellular matrix organization and enriched in osteoclast differentiation, the FoxO signalling pathway, and the tumour necrosis factor (TNF) signalling pathway in the development of OA. Conclusion The integrated analysis of the ceRNA network and co-expression network identified seven hub lncRNAs associated with OA. These lncRNAs may regulate extracellular matrix changes and chondrocyte homeostasis in OA progress. Cite this article: Bone Joint Res. 2020;9(3):90–98.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yucheng Fu ◽  
Qi Liu ◽  
Qiyuan Bao ◽  
Junxiang Wen ◽  
Zhuochao Liu ◽  
...  

Abstract Background Osteosarcoma is the primary bone malignant neoplasm that often develops metastasis. Increasing evidences have shown that non-coding RNAs (ncRNAs) relate to the progression of osteosarcoma. However, the ncRNAs’ roles in osteosarcoma metastasis are still unknown. Methods Differentially expressed (DE) RNAs were identified from Gene Expression Omnibus (GEO) database. Protein-protein interaction (PPI) of DE messenger RNAs (DEmRNAs) was built through STRING database. The target mRNAs and long ncRNAs (lncRNAs) of microRNAs (miRNA) were predicted through miRDB, Targetscan and Genecode databases, which then cross-checked with previously obtained DERNAs to construct competing endogenous RNA (ceRNA) network. All networks were visualized via Cytoscape and the hub RNAs were screened out through Cytoscape plug-in Cytohubba. The gene functional and pathway analyses were performed through DAVID and MirPath databases. The survival analyses of hub RNAs were obtained through Kaplan-Meier (KM) survival curves. Results Five hundred sixty-four DEmRNAs, 16 DElncRNAs and 22 DEmiRNAs were screened out. GO functional and KEGG pathway analyses showed that DERNAs were significantly associated with tumor metastasis. The ceRNA network including 6 lncRNAs, 55 mRNAs and 20 miRNAs were constructed and the top 10 hub RNAs were obtained. Above all, PI3K/AKT signaling pathway was identified as the most important osteosarcoma metastasis-associated pathway and its hub ceRNA module was constructed. The survival analyses showed that the RNAs in hub ceRNA module closely related to osteosarcoma patients’ prognosis. Conclusions The current study provided a new perspective on osteosarcoma metastasis. More importantly, the RNAs in hub ceRNA module might act as the novel therapeutic targets and prognostic factors for osteosarcoma patients.


Sign in / Sign up

Export Citation Format

Share Document