scholarly journals Development and Exploitation of KASP Assays for Genes Underpinning Drought Tolerance Among Wheat Cultivars From Pakistan

2021 ◽  
Vol 12 ◽  
Author(s):  
Shoaib Ur Rehman ◽  
Muhammad Ali Sher ◽  
Muhammad Abu Bakar Saddique ◽  
Zulfiqar Ali ◽  
Mahmood Alam Khan ◽  
...  

High-throughput genotyping for functional markers offers an excellent opportunity to effectively practice marker-assisted selection (MAS) while breeding cultivars. We developed kompetitive allele-specific PCR (KASP) assays for genes conferring drought tolerance in common wheat (Triticum aestivum L.). In total, 11 KASP assays developed in this study and five already reported assays were used for their application in wheat breeding. We investigated alleles at 16 loci associated with drought tolerance among 153 Pakistani hexaploid wheat cultivars released during 1953–2016; 28 diploid wheat accessions (16 for AA and 12 for BB) and 19 tetraploid wheat (AABB) were used to study the evolutionary history of the studied genes. Superior allelic variations of the studied genes were significantly associated with higher grain yield. Favored haplotypes of TaSnRK2.3-1A, TaSnRK2.3-1B, TaSnRK2.9-5A, TaSAP-7B, and TaLTPs-1A predominated in Pakistani wheat germplasm indicating unconscious pyramiding and selection pressure on favorable haplotypes during selection breeding. TaSnRK2.8-5A, TaDreb-B1, 1-feh w3, TaPPH-7A, TaMOC-7A, and TaPARG-2A had moderate to low frequencies of favorable haplotype among Pakistani wheat germplasm pointing toward introgression of favorable haplotypes by deploying functional markers in marker-assisted breeding. The KASP assays were compared with gel-based markers for reliability and phenotypically validated among 62 Pakistani wheat cultivars. Association analyses showed that the favorable allelic variations were significantly associated with grain yield-contributing traits. The developed molecular marker toolkit of the genes can be instrumental for the wheat breeding in Pakistan.

2012 ◽  
Vol 60 (4) ◽  
pp. 417-432 ◽  
Author(s):  
R. Mohammadi

The main objective of this study was to evaluate the genetic gain for grain yield, yield attributes and drought tolerance of 11 durum breeding lines and also to compare it with one modern cultivar and two durum and bread wheat landraces in contrasting environment groups in a period of four cropping seasons (2005–09) within the Iran/ICARDA joint project for moderately cold rainfed areas of Iran. The significant genotype × year interaction indicated that the average yield performance of genotypes across environments was not consistent over the years. Genetic gain (%) for grain yield was distinguishable between the stressed and non-stressed environments. A positive genetic gain (27.7 to 23.9%) was observed in the non-stressed environment and a negative genetic gain (−11.5 to −24.1%) in the stressed environment for the breeding lines, compared to the landraces, suggesting that the evaluation of breeding materials under non-stressed conditions should be continued. Unlike the modern cultivar, the landraces were low yielding, and less responsive to non-stressed environments for grain yield and yield attributes. The drought resistance indices, i.e. tolerance index (TOL) and stress susceptibility index (SSI), were better in landraces than breeding lines, while the drought tolerance indices, i.e. stress tolerance index (STI) and drought response index (DRI), were better in breeding lines. In contrast with landraces, the modern cultivar and the breeding lines showed significant changes for both grain yield and drought tolerance.


2020 ◽  
Author(s):  
Yan Yang ◽  
Smit Dhakal ◽  
Chenggen Chu ◽  
Shichen Wang ◽  
Qingwu Xue ◽  
...  

AbstractTwo drought-tolerant wheat cultivars, ‘TAM 111’ and ‘TAM 112’, have been widely grown in the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs worldwide. This study aimed to reveal genetic control of yield and yield components in the two cultivars under both dryland and irrigated conditions. A mapping population containing 124 F5:7 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA sequencing was used to construct high-density genetic maps. Data for yield and yield components were obtained from 11 environments. QTL analyses were performed based on 11 individual environments, across all environments, within and across mega-environments. Thirty-six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D, 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were identified on four chromosomes and eight were in common with the consistent QTL. These QTL increased dry biomass grain yield by 16.3 g m−2, plot yield by 28.1 g m−2, kernels spike−1 by 0.7, spikes m−2 by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent. TAM 112 alleles mainly increased spikes m−2 and thousand kernel weight while TMA 111 alleles increased kernels spike−1, harvest index and grain yield. The saturated genetic map and markers linked to significant QTL from this study will be very useful in developing high throughput genotyping markers for tracking the desirable haplotypes of these important yield-related traits in popular parental cultivars.


2020 ◽  
Vol 50 ◽  
Author(s):  
Carlos Eduardo da Silva Oliveira ◽  
Agner de Freitas Andrade ◽  
André Zoz ◽  
Renato Lustosa Sobrinho ◽  
Tiago Zoz

ABSTRACT One of the biggest limitations for the wheat crop expansion to Brazilian tropical regions is the high temperature in the rainy season. This study aimed to select, based on genetic divergence and path analysis, cultivars that tolerate cultivation in the summer (heat stress). Nine wheat cultivars were sown, using a randomized block design with three replications, with plots consisting of 10 rows of 6 m and row spacing of 0.15 m. The highest grain yield and number of ears m-2 were observed for the CD 150 cultivar and the largest 1,000-grain weight for CD 116. BRS 220, IPR 136, IPR 144 and BRS Pardela had the highest number of sterile spikelets. The highest number of grains per ear was observed for CD 150, CD 116, BRS Pardela, IPR 130 and IPR 85, showing direct effects on grain yield, evidenced by the path analysis. CD 116 and CD 150 were the most productive cultivars and can be considered as possible parents in wheat breeding programs. IPR 85, CD 116, CD 108 and CD 150 showed a greater tolerance to high temperatures.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0237293
Author(s):  
Yan Yang ◽  
Smit Dhakal ◽  
Chenggen Chu ◽  
Shichen Wang ◽  
Qingwu Xue ◽  
...  

Two drought-tolerant wheat cultivars, ‘TAM 111’ and ‘TAM 112’, have been widely grown in the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs worldwide. This study aimed to reveal genetic control of yield and yield components in the two cultivars under both dryland and irrigated conditions. A mapping population containing 124 F5:7 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA sequencing was used to construct high-density genetic maps. Data for yield and yield components were obtained from 11 environments. QTL analyses were performed based on 11 individual environments, across all environments, within and across mega-environments. Thirty-six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D, 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were identified on four chromosomes and eight were in common with the consistent QTL. These QTL increased dry biomass grain yield by 16.3 g m-2, plot yield by 28.1 g m-2, kernels spike-1 by 0.7, spikes m-2 by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent. TAM 112 alleles mainly increased spikes m-2 and thousand kernel weight while TMA 111 alleles increased kernels spike-1, harvest index and grain yield. The saturated genetic map and markers linked to significant QTL from this study will be very useful in developing high throughput genotyping markers for tracking the desirable haplotypes of these important yield-related traits in popular parental cultivars.


2019 ◽  
Vol 11 (32) ◽  
pp. 11-21
Author(s):  
ali eftekhari ◽  
amin baghizadeh ◽  
rooholah abdshahi ◽  
mohamad mehdi yaghubi ◽  
◽  
...  

2007 ◽  
Vol 42 (6) ◽  
pp. 817-825 ◽  
Author(s):  
Osmar Rodrigues ◽  
Julio César Barreneche Lhamby ◽  
Agostinho Dirceu Didonet ◽  
José Abramo Marchese

The objective of this study was to assess the impact of genetic breeding on grain yield, and to identify the physiological traits associated to the increment in yield and their related growth processes, for wheat cultivars grown in Southern Brazil, in the past five decades. Seven wheat cultivars released between 1940 and 1992, were compared for physiological aspects associated with grain yield. Grain yield, biological yield, biomass partitioning, harvest index and grain yield components were also determined. The number of grains per square meter was more affected by plant breeding and was better correlated with grain yield (r = 0.94, p<0.01) than with grain weight (r = -0.39ns). The higher number of grains per square meter was better correlated with the number of grains per spike in the modern cultivars than in the older ones. The genetic gain in grain yield was 44.9 kg ha-1 per year, reflecting important efforts of the breeding programs carried out in Southern Brazil. Grain yield changes, during the period of study, were better associated with biomass production (r = 0.78, p<0.01) than with harvest index (r = 0.65, p<0.01).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadeem Hussain ◽  
Abdul Ghaffar ◽  
Zafar Ullah Zafar ◽  
Muhammad Javed ◽  
Kausar Hussain Shah ◽  
...  

AbstractSalt tolerant wheat cultivars may be used as genetic resource for wheat breeding to ensure yield stability in future. The study was aimed to select salt tolerant cultivar(s) to identify novel source of salt tolerance in local wheat germplasm. Initially, 40 local wheat cultivars were screened at 150 mM NaCl stress at seedling stage. Selected salt-tolerant (three; S-24, LU-26S and Pasban-90) and salt-sensitive (four; MH-97, Kohistan-97, Inqilab-91 and Iqbal-2000) wheat cultivars were further evaluated using growth, yield, biochemical and physiological attributes. Growth and yield of selected cultivars were reduced under salt stress due to decline in plant water status, limited uptake of macronutrients (N, P and K), reduced K+/Na+ ratio, photosynthetic pigments and quantum yield of PSII. Wheat plants tried to acclimate salt stress by osmotic adjustment (accumulation of total soluble sugars, proline and free amino acids). Degree of salinity tolerance in cvs. S-24 and LU-26S found to be associated with maintenance of K+/Na+ ratio, osmo-protectant and photosynthetic activity and can be used as donor for salt tolerance in wheat breeding program at least in Pakistan. These cultivars can be further characterized using molecular techniques to identify QTLs/genes for salt exclusion, osmo-protectant and photosynthetic activity for molecular breeding.


2019 ◽  
Vol 23 (7) ◽  
pp. 879-886 ◽  
Author(s):  
A. M. Kokhmetova ◽  
M. N. Atishova ◽  
M. T. Kumarbayeva ◽  
I. N. Leonova

Tan spot caused by the fungus Pyrenophora tritici-repentis is an important leaf spot disease in wheat growing areas throughout the world. The study aims to identify wheat germplasm resistant to tan spot based on phytopathological screening and molecular marker analysis. A collection of 64 common wheat germplasms, including cultivars and breeding lines from Kazakhstan and CIMMYT, was assessed for tan spot resistance in greenhouse conditions and characterized using the Xfcp623 molecular marker, diagnostic for the Tsn1 gene. All wheat cultivars/lines varied in their reaction to tan spot isolate race 1, ranging from susceptible to resistant. Most accessions studied (53 %) were susceptible to Ptr race 1. Spring wheat cultivars were more susceptible to race 1 than winter wheat cultivars. As a result of genotyping, an insensitive reaction to Ptr ToxA was predicted in 41 wheat cultivars (64 %). The tsn1 gene carriers identified included 27 Kazakhstani and 14 CIMMYT cultivars/lines, demonstrating insensitivity to Ptr ToxA. The majority of the Tsn1 genotype were sensitive to race 1 and showed susceptibility to the pathogen in the field. Disease scores from seedling stage positively correlated with field disease ratings. Of particular interest are 27 wheat accessions that demonstrated resistance to spore inoculation by Ptr race 1, were characterized by insensitivity to ToxA and showed field resistance to the pathogen. The results of this study will contribute to wheat breeding programs for tan spot resistance with Marker Assisted Selection using the closely flanking markers.


Sign in / Sign up

Export Citation Format

Share Document