scholarly journals Combined Transcriptome and Proteome Analysis of Anthers of AL-type Cytoplasmic Male Sterile Line and Its Maintainer Line Reveals New Insights into Mechanism of Male Sterility in Common Wheat

2021 ◽  
Vol 12 ◽  
Author(s):  
Miaomiao Hao ◽  
Wenlong Yang ◽  
Tingdong Li ◽  
Muhammad Shoaib ◽  
Jiazhu Sun ◽  
...  

Cytoplasmic male sterility (CMS) plays an essential role in hybrid seeds production. In wheat, orf279 was reported as a CMS gene of AL-type male sterile line (AL18A), but its sterility mechanism is still unclear. Therefore, transcriptomic and proteomic analyses of the anthers of AL18A and its maintainer line (AL18B) were performed to interpret the sterility mechanism. Results showed that the electron transport chain and ROS scavenging enzyme expression levels changed in the early stages of the anther development. Biological processes, i.e., fatty acid synthesis, lipid transport, and polysaccharide metabolism, were abnormal, resulting in pollen abortion in AL18A. In addition, we identified several critical regulatory genes related to anther development through combined analysis of transcriptome and proteome. Most of the genes were enzymes or transcription factors, and 63 were partially homologous to the reported genic male sterile (GMS) genes. This study provides a new perspective of the sterility mechanism of AL18A and lays a foundation to study the functional genes of anther development.

2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


2016 ◽  
Vol 29 (1) ◽  
pp. 31-38
Author(s):  
G. M. Mohsin ◽  
Farruk Ahmed ◽  
M. S. Rahman ◽  
M. S. Islam

Field experiment was carried out and one cytoplasmic genetic male sterile line (Smsms) and two local lines were identified as maintainer lines (Fmsms). These two crossed materials namely 3(Shallot*Local) and 4 (Shallot *Local) produced 100 per cent male sterile progeny in full sib and backcross generations. The Shallot * market cultivar produced both male fertile and male sterile segregating progenies. It indicated that the market material is probably determined by dominant and recessive independently acting genes which genetically impure lines. All other crossed materials produced 100 per cent male fertile progeny upon crossing with shallot. So, in backcross generations, the male sterile plants were more when local was used as recurrent parent. Thus, the local cultivar can be used as maintainer line for “Shallot”. The performance of 904 F1 and 905 F1 hybrids over check and better parent was found to be preferably better using CMS system. So, considering the genetics and stability of the male sterility mechanism, further studies are needed towards hybrid variety development in Bangladesh.


1979 ◽  
Vol 57 (6) ◽  
pp. 602-618 ◽  
Author(s):  
B. A. Young ◽  
J. Schulz-Schaeffer ◽  
T. W. Carroll

Several different expressions of male sterility were observed in the plants sampled for the study of pollen and anther development in the third substitution backcross generation to intermediate wheatgrass. These included (1) pollen abortion following engorgement with starch, (2) abortion of microspores with exine abnormalities (found most often in plants with a high degree of meiotic irregularities), (3) abortion of microspores with normal exines, (4) release at anther dehiscence of normal-appearing late vacuolate microspores, (5) enlargement of one of the parietal layers of the anther, and (6) tapetal abnormalities, including orbicular wall malformations. Anthers from plants which were male sterile or partially male sterile and meiotically irregular were shorter than anthers from fertile or partially male-sterile, meiotically regular plants.Definite statements about specific causes of the male sterility could not be made. Meiotic irregularities may be involved in some of the male sterility, and exine malformations appeared to be directly related to sterile microspores. Tapetal disturbances were observed infrequently. Probably the consequences of several factors were observed in the backcross material.


2018 ◽  
Author(s):  
Wympher Langstang ◽  
Eros Kharshiing ◽  
Nagulan Venugopal

AbstractGaultheria fragrantissima Wall. (Ericaceae) is a gynodioecious species having both hermaphrodite and male sterile plants. In this study, we present a comparative analysis of the different stages of anther development in naturally occuring hermaphrodite and male sterile populations of G. fragrantissima found in Meghalaya, India. While hermaphrodite flowers had well developed anther lobes, the male sterile flowers formed a white unorganized mass of tissues with a tuft of hairy outgrowth at the tip of the stamens. Histological analyses of progressive anther development in both the lines indicate an abnormal development of the sporogenous tissue in the developing anthers in the male steril line. While anther development in the hermaphrodite line was of the dicotyledonous type, the anthers of male sterile line showed progressive degradation of the sporogenous tissues and wall layers. Pollen development was also disrupted in male sterile line resulting in distorted pollen due to the irregular projection of exine wall. Our results suggest that premature degradation of the sporogenous tissues during anther development determines male sterility in G. fragrantissima.


Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanyan Sun ◽  
Dongsuo Zhang ◽  
Zhenzhen Wang ◽  
Yuan Guo ◽  
Xiaomin Sun ◽  
...  

Abstract Background Photoperiod and/or thermo-sensitive male sterility is an effective pollination control system in crop two-line hybrid breeding. We previously discovered the spontaneous mutation of a partially male sterile plant and developed a thermo-sensitive genic male sterile (TGMS) line 373S in Brassica napus L. The present study characterized this TGMS line through cytological observation, photoperiod/ temperature treatments, and genetic investigation. Results Microscopic observation revealed that the condensed cytoplasm and irregular exine of microspores and the abnormal degradation of tapetum are related to pollen abortion. Different temperature and photoperiod treatments in field and growth cabinet conditions indicated that the fertility alteration of 373S was mainly caused by temperature changes. The effects of photoperiod and interaction between temperature and photoperiod were insignificant. The critical temperature leading to fertility alteration ranged from 10 °C (15 °C/5 °C) to 12 °C (17 °C/7 °C), and the temperature-responding stage was coincident with anther development from pollen mother cell formation to meiosis stages. Genetic analysis indicated that the TGMS trait in 373S was controlled by one pair of genes, with male sterility as the recessive. Multiplex PCR analysis revealed that the cytoplasm of 373S is pol type. Conclusions Our study suggested that the 373S line in B. napus has a novel thermo-sensitive gene Bnmst1 in Pol CMS cytoplasm background, and its fertility alteration is mainly caused by temperature changes. Our results will broaden the TGMS resources and lay the foundation for two-line hybrid breeding in B. napus.


1974 ◽  
Vol 52 (3) ◽  
pp. 435-441 ◽  
Author(s):  
Harry T. Horner Jr. ◽  
Milton A. Rogers

In the male-fertile line of pepper, microsporogenesis and pollen development are normal. During meiosis, the meiocytes become encased in callose and a locular cavity forms. A rudimentary pollen wall, preceded by primexine deposition, is formed at the tetrad stage around the microspores before their release from the callose. The tapetum remains peripheral in the locule until the vacuolate pollen stage when it disappears. The sporogenous cells of the cytoplasmic male-sterile line complete meiosis, and the callose-encased microspores also deposit a primexine. Further development of the microspores is arrested. Before and during meiosis the tapetal cells become highly vacuolate and remain appressed to the meiocytes; a locular cavity is not formed. After primexine deposition, the tetrads of microspores, which are still encased in callose, seem to collapse as they are encroached upon by the vacuolate tapetum. After abortion of the microspores the outer tapetal layer degenerates, followed by the inner tapetal layer. The aborted mass late in anther development consists of crushed microspore tetrads, primary walls of the sporogenous cells and tapetum, callose, and the collapsed tapetum. The manner of abortion in pepper is compared with previously described mechanisms.


Sign in / Sign up

Export Citation Format

Share Document