scholarly journals The Protective Role of Type I Interferons in the Gastrointestinal Tract

2017 ◽  
Vol 8 ◽  
Author(s):  
Kevin P. Kotredes ◽  
Brianna Thomas ◽  
Ana M. Gamero
2017 ◽  
Vol 282 (6) ◽  
pp. 522-536 ◽  
Author(s):  
K. H. Simons ◽  
H. A. B. Peters ◽  
J. W. Jukema ◽  
M. R. de Vries ◽  
P. H. A. Quax

2018 ◽  
Vol 121 ◽  
pp. 16-24 ◽  
Author(s):  
K.H. Simons ◽  
M.R. de Vries ◽  
H.A.B. Peters ◽  
J.F. Hamming ◽  
J.W. Jukema ◽  
...  

2009 ◽  
Vol 5 (2) ◽  
pp. 143-149
Author(s):  
Marja Ojaniemi ◽  
Mari Liljeroos ◽  
Reetta Vuolteenaho

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


2014 ◽  
Vol 8 ◽  
Author(s):  
Murray Carol ◽  
O Loughlin Elaine ◽  
Cunningham Colm

2001 ◽  
pp. 77-84 ◽  
Author(s):  
Siquan Sun ◽  
Xiaohong Zhang ◽  
David Tough ◽  
Jonathan Sprent

Author(s):  
Sara Vitale ◽  
Valentina Russo ◽  
Beatrice Dettori ◽  
Cecilia Palombi ◽  
Denis Baev ◽  
...  

Abstract The type I interferons are central to a vast array of immunological functions. The production of these immune-modulatory molecules is initiated at the early stages of the innate immune responses and, therefore, plays a dominant role in shaping downstream events in both innate and adaptive immunity. Indeed, the major role of IFN-α/β is the induction of priming states, relevant for the functional differentiation of T lymphocyte subsets. Among T-cell subtypes, the CD4+CD25+Foxp3+ T regulatory cells (Tregs) represent a specialized subset of CD4+ T cells with a critical role in maintaining peripheral tolerance and immune homeostasis. Although the role of type I interferons in maintaining the function of thymus-derived Tregs has been previously described, the direct contribution of these innate factors to peripheral Treg (pTreg) and induced Treg (iTreg) differentiation and suppressive function is still unclear. We now show that, under tolerogenic conditions, IFN-α/β play a critical role in antigen-specific and also polyclonal naive CD4+ T-cell conversion into peripheral antigen-specific CD4+CD25+Foxp3+ Tregs and inhibit CD4+ T helper (Th) cell expansion in mice. While type I interferons sustain the expression and the activation of the transcription master regulators Foxp3, Stat3 and Stat5, these innate molecules reciprocally inhibit Th17 cell differentiation. Altogether, these results indicate a new pivotal role of IFN-α/β on pTreg differentiation and induction of peripheral tolerance, which may have important implications in the therapeutic control of inflammatory disorders, such as of autoimmune diseases.


2019 ◽  
Vol 20 (4) ◽  
pp. 895 ◽  
Author(s):  
Qiang Li ◽  
Chunfa Liu ◽  
Ruichao Yue ◽  
Saeed El-Ashram ◽  
Jie Wang ◽  
...  

Cyclic GMP-AMP synthase (cGAS) is an important cytosolic DNA sensor that plays a crucial role in triggering STING-dependent signal and inducing type I interferons (IFNs). cGAS is important for intracellular bacterial recognition and innate immune responses. However, the regulating effect of the cGAS pathway for bone marrow-derived dendritic cells (BMDCs) during Mycobacterium bovis (M. bovis) infection is still unknown. We hypothesized that the maturation and activation of BMDCs were modulated by the cGAS/STING/TBK1/IRF3 signaling pathway. In this study, we found that M. bovis promoted phenotypic maturation and functional activation of BMDCs via the cGAS signaling pathway, with the type I IFN and its receptor (IFNAR) contributing. Additionally, we showed that the type I IFN pathway promoted CD4+ T cells’ proliferation with BMDC during M. bovis infection. Meanwhile, the related cytokines increased the expression involved in this signaling pathway. These data highlight the mechanism of the cGAS and type I IFN pathway in regulating the maturation and activation of BMDCs, emphasizing the important role of this signaling pathway and BMDCs against M. bovis. This study provides new insight into the interaction between cGAS and dendritic cells (DCs), which could be considered in the development of new drugs and vaccines against tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document