scholarly journals CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment

2019 ◽  
Vol 10 ◽  
Author(s):  
Marina Martinez ◽  
Edmund Kyung Moon
Angiogenesis ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Parvin Akbari ◽  
Elisabeth J. M. Huijbers ◽  
Maria Themeli ◽  
Arjan W. Griffioen ◽  
Judy R. van Beijnum

Abstract T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.


2016 ◽  
Vol 12 (6) ◽  
pp. 718-729 ◽  
Author(s):  
Hao Zhang ◽  
Zhen-long Ye ◽  
Zhen-gang Yuan ◽  
Zheng-qiang Luo ◽  
Hua-jun Jin ◽  
...  

2019 ◽  
Vol 116 (16) ◽  
pp. 7624-7631 ◽  
Author(s):  
Yushu Joy Xie ◽  
Michael Dougan ◽  
Noor Jailkhani ◽  
Jessica Ingram ◽  
Tao Fang ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy has been successful in clinical trials against hematological cancers, but has experienced challenges in the treatment of solid tumors. One of the main difficulties lies in a paucity of tumor-specific targets that can serve as CAR recognition domains. We therefore focused on developing VHH-based, single-domain antibody (nanobody) CAR T cells that target aspects of the tumor microenvironment conserved across multiple cancer types. Many solid tumors evade immune recognition through expression of checkpoint molecules, such as PD-L1, that down-regulate the immune response. We therefore targeted CAR T cells to the tumor microenvironment via the checkpoint inhibitor PD-L1 and observed a reduction in tumor growth, resulting in improved survival. CAR T cells that target the tumor stroma and vasculature through the EIIIB+ fibronectin splice variant, which is expressed by multiple tumor types and on neovasculature, are likewise effective in delaying tumor growth. VHH-based CAR T cells can thus function as antitumor agents for multiple targets in syngeneic, immunocompetent animal models. Our results demonstrate the flexibility of VHH-based CAR T cells and the potential of CAR T cells to target the tumor microenvironment and treat solid tumors.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3039-3039
Author(s):  
Juemin Fang ◽  
Yan Sun ◽  
Xianling Guo ◽  
Bailu Xie ◽  
Hui Wang ◽  
...  

3039 Background: The limitations of chimeric antigen receptor T cells (CAR-T) in solid tumors are immunosuppressive tumor microenvironment and difficult infiltration to tumor. In order to reduce on-target off-tumor toxicities and circumvent the immune-suppressive tumor microenvironment(TME), we modified autologous CAR-T to be specific for mesothelin (MSLN) on cancer cells and secrete PD-1 antibodies (aPD1-MSLN-CAR T cells). Here, we report the safety and efficacy of aPD1-MSLN-CAR T cells in 10 patients with relapsed/refractory solid cancers in this single-arm, open-label, first-in-human phase I pilot study (ClinicalTrial.gov: NCT03615313). Methods: aPD1-MSLN-CAR T cells were prepared from peripheral blood mononuclear cells and engineered using PiggyBac Transposon System to target MSLN and secrete PD-1 antibodies. 10 patients with mesothelin positive relapsed/refractory solid cancers after failure to standard therapies were treated with aPD1-MSLN-CAR T cells for two or more cycles until disease progression or intolerable toxicity. The dose escalation of CAR T cells was designed to be 5×106/kg, 5×107/kg, and 1×108/kg, respectively. Adverse events were evaluated according to CTCAE-V4.03 and clinical response was assessed by RECIST 1.1. CAR expression was analyzed using quantitative real-time polymerase chain reaction. PD-1 antibodies were detected by ELISA. Serum IL-2, IL-4, IL-6, IL-10, IFN-γ and TNF-α were measured using flow cytometry. Results: The most common adverse events were mild fatigue and fever. Abdominal pain was also observed in 1 patient. Grade 1 and 2 cytokine release syndromes were observed without neurologic symptoms in 10 patients. After aPD1-MSLN-mRNA-CAR T cells treatment, 2 patients (20%) achieved partial response (PR), 4 (40%) remained stable (SD), and the rest 4 (40%) patients developed disease progression (PD). The median PFS was 97 days [95% CI (13, 180)] estimated by Kaplan-Meier method. Conclusions: These findings lend support that the combination of modified CAR T cells targeting MSLN with PD1 inhibition for solid tumors is safe. Modified CAR-T cells expressing PD-1 antibodies maybe an option to improve CAR-T efficacy as a result of refined TME. Clinical trial information: NCT03615313 . [Table: see text]


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julien Edeline ◽  
Roch Houot ◽  
Aurélien Marabelle ◽  
Marion Alcantara

AbstractChimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A361-A361
Author(s):  
Song Li ◽  
Chengfei Pu ◽  
Zhiyuan Cao ◽  
Ning Li ◽  
Xinyi Yang ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cell therapy has made significant progress in the treatment of blood cancers such as leukemia, lymphoma, and myeloma. However, the therapy faces many challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity, target specificity, and limited reactive cell expansion in vivo.Conventional CAR T cell therapy has thus far shown weak cell expansion in solid tumor patients and achieved little or no therapeutic responses. Here, we developed CAR T cells based on a novel CoupledCAR® technology to treat solid tumors. In contrast to conventional CAR T cells, CoupledCAR T cells significantly improved the expansion of the CAR T cells in vivo and enhanced the CAR T cells’ migration ability and resistance to immunosuppression by the tumor microenvironment. The enhanced migration ability and resistance allow the CAR T cells to infiltrate to tumor tissue sites and increase anti-tumor activities.MethodsWe designed a ‘CoupledCAR’ lentivirus vector containing a single-chain variable fragment (scFv) targeting human TSHR. The lentivirus was produced by transfecting HEK-293T cells with ‘CoupledCAR’ lentiviral vectors and viral packaging plasmids. Patient‘s CD3 T cells were cultured in X-VIVO medium containing 125U/mL 1interleukin-2 (IL-2), and transduced with ‘CoupledCAR’ lentivirus at certain MOI. Transduction efficiency and was evaluated at 7 to 9 days after ‘CoupledCAR’ lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR. The evaluation of response level for patients were performed at month 1,month 3,and month 6 by PET/CT.ResultsSpecifically, we engineered CoupledCAR T cells with lentiviral vectors encoding an anti-GCC (guanylate cyclase 2C) CAR molecule. Furthermore, anti-GCC CAR T cells showed anti-tumor activities in vitro and in vivo experiments.To verify the safety and efficacy of CoupledCAR T cells for treating solid tumors, we conducted several clinical trials for different solid tumors, including seven patients with colorectal cancer. These seven patients failed multiple rounds of chemotherapy and radiotherapy. In the clinical trial, the patients were infused with autologous anti-GCC CoupledCAR T cells range from 4.9×105/kg to 2.9×106/kg. All patients using anti-GCC CoupledCAR T cells showed rapid expansion of CoupledCAR T cells and killing of tumor cells. Specifically, we observed that CoupledCAR T cells expanded significantly in the patients and infiltrated tumor tissue sites, demonstrating enhanced anti-tumor activities. PET/CT showed significant tumor shrinkage and SUV max declined, and the ongoing responses were monitored. Patient 3 achieved complete response and the best overall response rate (ORR, include complete remission, complete metabolic response, partial response, and partial metabolic response.) was 71.4% (5/7), complete remission (CR) rate was 14.3% (1/7).ConclusionsThe clinical data demonstrated that CoupledCAR T cells effectively expanded, infiltrated tumor tissue sites, and kill tumor cells in patients with colorectal cancer. We used immunotherapy to achieve complete remission in patients with advanced colorectal cancer for the first time. We are recruiting more colorectal cancer patients to further test the safety and efficacy of anti-GCC CoupledCAR T cells. Since our CoupledCAR® technology is a platform technology, we are expanding it to treat other solid tumors using different target tumor markers.


Sign in / Sign up

Export Citation Format

Share Document