scholarly journals Postnatal Gut Immunity and Microbiota Development Is Minimally Affected by Prenatal Inflammation in Preterm Pigs

2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyu Pan ◽  
Du Zhang ◽  
Duc Ninh Nguyen ◽  
Wei Wei ◽  
Xinxin Yu ◽  
...  
2019 ◽  
Vol 317 (1) ◽  
pp. G67-G77 ◽  
Author(s):  
Shuqiang Ren ◽  
Yan Hui ◽  
Sandra Goericke-Pesch ◽  
Stanislava Pankratova ◽  
Witold Kot ◽  
...  

Prenatal inflammation may predispose to preterm birth and postnatal inflammatory disorders such as necrotizing enterocolitis (NEC). Bioactive milk ingredients may help to support gut maturation in such neonates, but mother’s milk is often insufficient after preterm birth. We hypothesized that supplementation with bioactive ingredients from bovine milk [osteopontin (OPN), caseinoglycomacropeptide (CGMP), colostrum (COL)] supports gut, immunity, and NEC resistance in neonates born preterm after gram-negative infection before birth. Using preterm pigs as a model for preterm infants, fetal pigs were given intraamniotic injections of lipopolysaccharide (LPS; 1 mg/fetus) and delivered 3 days later (90% gestation). For 5 days, groups of LPS-exposed pigs were fed formula (FOR), bovine colostrum (COL), or formula enriched with OPN or CGMP. LPS induced intraamniotic inflammation and postnatal systemic inflammation but limited effects on postnatal gut parameters and NEC. Relative to FOR, COL feeding to LPS-exposed pigs showed less diarrhea, NEC severity, reduced gut IL-1β and IL-8 levels, greater gut goblet cell density and digestive enzyme activities, and blood helper T-cell fraction. CGMP improved neonatal arousal and gut lactase activities and reduced LPS-induced IL-8 secretion in intestinal epithelial cells (IECs) in vitro. Finally, OPN tended to reduce diarrhea and stimulated IEC proliferation in vitro. No effects on villus morphology, circulating cytokines, or colonic microbiota were observed among groups. In conclusion, bioactive milk ingredients exerted only modest effects on gut and systemic immune parameters in preterm pigs exposed to prenatal inflammation. Short-term, prenatal exposure to inflammation may render the gut less sensitive to immune-modulatory milk effects. NEW & NOTEWORTHY Prenatal inflammation is a risk factor for preterm birth and postnatal complications including infections. However, from clinical studies, it is difficult to separate the effects of only prenatal inflammation from preterm birth. Using cesarean-delivered preterm pigs with prenatal inflammation, we documented some beneficial gut effects of bioactive milk diets relative to formula, but prenatal inflammation appeared to decrease the sensitivity of enteral feeding. Special treatments and diets may be required for this neonatal population.


Immunology ◽  
2021 ◽  
Author(s):  
Vu L. Ngo ◽  
Michal Kuczma ◽  
Estera Maxim ◽  
Timothy L. Denning
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiangqi Fan ◽  
Haiyan Hu ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Jun He ◽  
...  

Abstract Background Lentinan (LNT) may regulate many important physiological functions of human and animals. This study aimed to verify whether LNT administration could relieve diarrhea via improving gut immunity in rotavirus (RV)-challenged weaned pigs. Methods Twenty-eight weaned pigs were randomly fed 2 diets containing 0 or 84 mg/kg LNT product for 19 d (n = 14). RV infection was executed on d 15. After extracting polysaccharides from LNT product, its major monosaccharides were analyzed. Then, LNT polysaccharide was used to administrate RV-infected IPEC-J2 cells. Results Dietary LNT supplementation supported normal function of piglets even when infected with RV, as reflected by reduced growth performance loss and diarrhea prevalence, and maintained gut immunity (P < 0.05). The polysaccharide was isolated from LNT product, which molecular weight was 5303 Da, and major monosaccharides included glucose, arabinose and galactose. In RV-infected IPEC-J2 cells, this polysaccharide significantly increased cell viability (P < 0.05), and significantly increased anti-virus immunity via regulating pattern recognition receptors and host defense peptides (P < 0.05). Conclusion Those results suggest that LNT administration increases the piglets’ resistance to RV-induced stress, likely by supporting intestinal immunity.


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


2018 ◽  
Vol 333 ◽  
pp. 9-18 ◽  
Author(s):  
Ana M. Dias ◽  
Márcia S. Pereira ◽  
Nuno A. Padrão ◽  
Inês Alves ◽  
Ricardo Marcos-Pinto ◽  
...  
Keyword(s):  

Theranostics ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 8570-8586
Author(s):  
Lingjun Tong ◽  
Haining Hao ◽  
Zhe Zhang ◽  
Youyou Lv ◽  
Xi Liang ◽  
...  

2017 ◽  
Vol 36 ◽  
pp. S15
Author(s):  
K. Higashizono ◽  
K. Fukatsu ◽  
A. Watkins ◽  
M. Noguchi ◽  
T. Watanabe ◽  
...  

2019 ◽  
Vol 317 (1) ◽  
pp. G57-G66 ◽  
Author(s):  
Xiaocai Yan ◽  
Elizabeth Managlia ◽  
Xiao-Di Tan ◽  
Isabelle G. De Plaen

Prenatal inflammation is a risk factor for necrotizing enterocolitis (NEC), and it increases intestinal injury in a rat NEC model. We previously showed that maldevelopment of the intestinal microvasculature and lack of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) signaling play a role in experimental NEC. However, whether prenatal inflammation affects the intestinal microvasculature remains unknown. In this study, mouse dams were injected intraperitoneally with lipopolysaccharide (LPS) or saline at embryonic day 17. Neonatal intestinal microvasculature density, endothelial cell proliferation, and intestinal VEGF-A and VEGFR2 proteins were assessed in vivo. Maternal and fetal serum TNF concentrations were measured by ELISA. The impact of TNF on the neonatal intestinal microvasculature was examined in vitro and in vivo, and we determined whether prenatal LPS injection exacerbates experimental NEC via TNF. Here we found that prenatal LPS injection significantly decreased intestinal microvascular density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression in neonatal mice. Prenatal LPS injection increased maternal and fetal serum levels of TNF. TNF decreased VEGFR2 protein in vitro in neonatal endothelial cells. Postnatal TNF administration in vivo decreased intestinal microvasculature density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression and increased the incidence of severe NEC. These effects were ameliorated by stabilizing hypoxia-inducible factor-1α, the master regulator of VEGF. Furthermore, prenatal LPS injection significantly increased the incidence of severe NEC in our model, and the effect was dependent on endogenous TNF. Our study suggests that prenatal inflammation increases the susceptibility to NEC, downregulates intestinal VEGFR2 signaling, and affects perinatal intestinal microvascular development via a TNF mechanism. NEW & NOTEWORTHY This report provides new evidence that maternal inflammation decreases neonatal intestinal VEGF receptor 2 signaling and endothelial cell proliferation, impairs intestinal microvascular development, and predisposes neonatal mouse pups to necrotizing enterocolitis (NEC) through inflammatory cytokines such as TNF. Our data suggest that alteration of intestinal microvascular development may be a key mechanism by which premature infants exposed to prenatal inflammation are at risk for NEC and preserving the VEGF/VEGF receptor 2 signaling pathway may help prevent NEC development.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
María Priscila Saracino ◽  
Cecilia Celeste Vila ◽  
Melina Cohen ◽  
María Virginia Gentilini ◽  
Guido Hernán Falduto ◽  
...  

Abstract Background: The main targets of the host’s immune system in Trichinella spiralis infection are the adult worms (AW), at the gut level, and the migrant or newborn larvae (NBL), at systemic and pulmonary levels. Most of the studies carried out in the gut mucosa have been performed on the Payer’s patches and/or the mesenteric lymph nodes but not on the lamina propria, therefore, knowledge on the gut immune response against T. spiralis remains incomplete. Methods This study aimed at characterizing the early mucosal immune response against T. spiralis, particularly, the events taking place between 1 and 13 dpi. For this purpose, Wistar rats were orally infected with muscle larvae of T. spiralis and the humoral and cellular parameters of the gut immunity were analysed, including the evaluation of the ADCC mechanism exerted by lamina propria cells. Results A marked inflammation and structural alteration of the mucosa was found. The changes involved an increase in goblet cells, eosinophils and mast cells, and B and T lymphocytes, initially displaying a Th1 profile, characterised by the secretion of IFN-γ and IL-12, followed by a polarization towards a Th2 profile, with a marked increase in IgE, IgG1, IL-4, IL-5 and IL-13 levels, which occurred once the infection was established. In addition, the helminthotoxic activity of lamina propria cells demonstrated the role of the intestine as a place of migrant larvae destruction, indicating that not all the NBLs released in the gut will be able to reach the muscles. Conclusions The characterization of the immune response triggered in the gut mucosa during T. spiralis infection showed that not only an effector mechanism is directed toward the AW but also towards the NBL as a cytotoxic activity was observed against NBL exerted by lamina propria cells.


Sign in / Sign up

Export Citation Format

Share Document