scholarly journals Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Johanna Bödder ◽  
Tasmin Zahan ◽  
Rianne van Slooten ◽  
Gerty Schreibelt ◽  
I. Jolanda M. de Vries ◽  
...  

Immunotherapeutic approaches have revolutionized the treatment of several diseases such as cancer. The main goal of immunotherapy for cancer is to modulate the anti-tumor immune responses by favoring the recognition and destruction of tumor cells. Recently, a better understanding of the suppressive effect of the tumor microenvironment (TME) on immune cells, indicates that restoring the suppressive effect of the TME is crucial for an efficient immunotherapy. Natural killer (NK) cells and dendritic cells (DCs) are cell types that are currently administered to cancer patients. NK cells are used because of their ability to kill tumor cells directly via cytotoxic granzymes. DCs are employed to enhance anti-tumor T cell responses based on their ability to present antigens and induce tumor-antigen specific CD8+ T cell responses. In preclinical models, a particular DC subset, conventional type 1 DCs (cDC1s) is shown to be specialized in cross-presenting extracellular antigens to CD8+ T cells. This feature makes them a promising DC subset for cancer treatment. Within the TME, cDC1s show a bidirectional cross-talk with NK cells, resulting in a higher cDC1 recruitment, differentiation, and maturation as well as activation and stimulation of NK cells. Consequently, the presence of cDC1s and NK cells within the TME might be of utmost importance for the success of immunotherapy. In this review, we discuss the function of cDC1s and NK cells, their bidirectional cross-talk and potential strategies that could improve cancer immunotherapy.

2004 ◽  
Vol 172 (9) ◽  
pp. 5363-5370 ◽  
Author(s):  
Diego Tosi ◽  
Roberta Valenti ◽  
Agata Cova ◽  
Gloria Sovena ◽  
Veronica Huber ◽  
...  

2020 ◽  
Vol 353 ◽  
pp. 104132
Author(s):  
Lei Zhao ◽  
Hong Wang ◽  
Rony Thomas ◽  
Xiaoling Gao ◽  
Hong Bai ◽  
...  

Diabetes ◽  
2008 ◽  
Vol 57 (5) ◽  
pp. 1312-1320 ◽  
Author(s):  
E. Martinuzzi ◽  
G. Novelli ◽  
M. Scotto ◽  
P. Blancou ◽  
J.-M. Bach ◽  
...  

2003 ◽  
Vol 77 (3) ◽  
pp. 2081-2092 ◽  
Author(s):  
M. M. Addo ◽  
X. G. Yu ◽  
A. Rathod ◽  
D. Cohen ◽  
R. L. Eldridge ◽  
...  

ABSTRACT Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/106 PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 109-OR
Author(s):  
ANGELA M. MITCHELL ◽  
AIMON ALKANANI ◽  
KRISTEN MCDANIEL ◽  
LAURA PYLE ◽  
KATHLEEN WAUGH ◽  
...  

Diabetologia ◽  
2010 ◽  
Vol 53 (7) ◽  
pp. 1451-1460 ◽  
Author(s):  
L. G. Petrich de Marquesini ◽  
J. Fu ◽  
K. J. Connor ◽  
A. J. Bishop ◽  
N. E. McLintock ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Violette Dirix ◽  
Virginie Verscheure ◽  
Françoise Vermeulen ◽  
Iris De Schutter ◽  
Tessa Goetghebuer ◽  
...  

Infant CD4+T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8+T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8+T-cell responses uponBordetella pertussisinfection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γsecretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4+and CD8+T lymphocytes are involved in IFN-γproduction. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4+lymphocytes were the major source of this cytokine. IFN-γsynthesis by CD8+cells was CD4+T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γsynthesis by CD4+cells was sometimes inhibited by CD8+lymphocytes, suggesting the presence of CD8+regulatory T cells. The role of this dual IFN-γsecretion by CD4+and CD8+T lymphocytes in pertussis remains to be investigated.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Tae Gun Kang ◽  
Hyo Jin Park ◽  
Jihyun Moon ◽  
June Hyung Lee ◽  
Sang-Jun Ha

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A614-A614
Author(s):  
Natalie Wolf ◽  
Cristina Blaj ◽  
Lora Picton ◽  
Gail Snyder ◽  
Li Zhang ◽  
...  

BackgroundMost current cancer immunotherapies are based on mobilizing CD8 T cell responses. However, many types of tumors evade CD8 T cell recognition by displaying few or no antigens, or losing expression of MHC I. These considerations underlie the need for complementary therapies that mobilize other antitumor effector cells, such as NK cells, which preferentially kill MHC I-deficient cells. Cyclic dinucleotides (CDNs) activate the cGAS-STING pathway of the innate immune system and are candidates as immunotherapy agents. Intratumoral CDN injections induce type I IFNs and other mediators that amplify the CD8 T cell response and induce tumor regression [1]. CDN therapy also induces long-term tumor regressions in some MHC I-deficient tumor models, mediated primarily by NK cells [2].MethodsTo extend the efficacy of CDN therapy, we combined the IL-2 superkine, H9, or half-life extended H9, with CDNs to target and activate NK cells in the tumor microenvironment and prevent or delay the onset of NK cell desensitization [3,4]. In these studies, we utilized B16-F10 and MC38 tumor cells lacking B2m to examine effects of the combination therapy on MHC I-deficient tumor growth as well as to examine the activation of NK cells by flow cytometry and cytotoxicity assays. We also utilized B16-F10 WT and the spontaneous tumor model, MCA, to assess the effect of the combination therapy on MHC I+ tumors.ResultsHere we show that H9 synergized with CDN therapy to mobilize much more powerful antitumor responses against MHC I-deficient tumors than CDN alone. The responses were mediated by NK cells and in some cases CD4 T cells, and were accompanied by increased recruitment to and sustained activation of NK cells in the tumor. This combination therapy regimen activated NK cells systemically, as shown by antitumor effects distant from the site of CDN injection and enhanced cytolytic activity of splenic NK cells against tumor cell targets ex vivo. Finally, the same combination therapy regimen synergistically mobilized powerful CD8 T cell responses in the case of MHC I+ tumor cells, suggesting the generality of the approach. The approach was effective against primary sarcomas, as well, especially when combined with checkpoint therapy, leading to tumor regressions and long-term survival of many mice with MCA-induced sarcoma.ConclusionsOverall, our work demonstrates the impact of a novel combination therapy in mobilizing powerful NK and T cell-mediated antitumor activity, providing important justification for evaluating this approach for treating cancers that are refractory to available treatment options.ReferencesCorrales, L., Glickman, L.H., McWhirter, S.M., Kanne, D.B., Sivick, K.E., Katibah, G.E., Woo, S.R., Lemmens, E., Banda, T., Leong, J.J., et al. (2015). Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep 11, 1018–1030.Nicolai, C.J., Wolf, N., Chang, I.C., Kirn, G., Marcus, A., Ndubaku, C.O., McWhirter, S.M., and Raulet, D.H. (2020). NK cells mediate clearance of CD8(+) T cell-resistant tumors in response to STING agonists. Science immunology 5, eaaz2738.Levin, A.M., Bates, D.L., Ring, A.M., Krieg, C., Lin, J.T., Su, L., Moraga, I., Raeber, M.E., Bowman, G.R., Novick, P., et al. (2012). Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533.Ardolino, M., Azimi, C.S., Iannello, A., Trevino, T.N., Horan, L., Zhang, L., Deng, W., Ring, A.M., Fischer, S., Garcia, K.C., and Raulet, D.H. (2014). Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest 124, 4781–4794.


2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v121-v122
Author(s):  
N. Kamran ◽  
M. Ayala ◽  
Y. Li ◽  
H. Assi ◽  
M. Candolfi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document