scholarly journals Visceral Adipose Tissue: A New Target Organ in Virus-Induced Type 1 Diabetes

2021 ◽  
Vol 12 ◽  
Author(s):  
Danny Zipris

Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing β-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering β-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop β-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering β-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.

2018 ◽  
Vol 238 (1) ◽  
pp. 61-75 ◽  
Author(s):  
James C Needell ◽  
Madalyn N Brown ◽  
Danny Zipris

The etiopathogenesis of type 1 diabetes (T1D) remains poorly understood. We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced T1D to better understand the role of the innate immune system in the mechanism of virus-induced disease. We observed that infection with KRV results in cell influx into visceral adipose tissue soon following infection prior to insulitis and hyperglycemia. In sharp contrast, subcutaneous adipose tissue is free of cellular infiltration, whereas β cell inflammation and diabetes are observed beginning on day 14 post infection. Immunofluorescence studies further demonstrate that KRV triggers CD68+ macrophage recruitment and the expression of KRV transcripts and proinflammatory cytokines and chemokines in visceral adipose tissue. Adipocytes from naive rats cultured in the presence of KRV express virus transcripts and upregulate cytokine and chemokine gene expression. KRV induces apoptosis in visceral adipose tissue in vivo, which is reflected by positive TUNEL staining and the expression of cleaved caspase-3. Moreover, KRV leads to an oxidative stress response and downregulates the expression of adipokines and genes associated with mediating insulin signaling. Activation of innate immunity with Poly I:C in the absence of KRV leads to CD68+ macrophage recruitment to visceral adipose tissue and a decrease in adipokine expression detected 5 days following Poly (I:C) treatment. Finally, proof-of-principle studies show that brief anti-inflammatory steroid therapy suppresses visceral adipose tissue inflammation and protects from virus-induced disease. Our studies provide evidence raising the hypothesis that visceral adipose tissue inflammation and dysfunction may be involved in early mechanisms triggering β cell autoimmunity.


Metabolism ◽  
2011 ◽  
Vol 60 (12) ◽  
pp. 1775-1780 ◽  
Author(s):  
René Baudrand ◽  
José Miguel Domínguez ◽  
Cristian A. Carvajal ◽  
Arnoldo Riquelme ◽  
Carmen Campino ◽  
...  

2018 ◽  
Vol 31 (9) ◽  
pp. 959-969 ◽  
Author(s):  
Esra Nurten ◽  
Mandy Vogel ◽  
Thomas Michael Kapellen ◽  
Sandy Richter ◽  
Antje Garten ◽  
...  

Abstract Background Adipokines were shown to affect glucose homeostasis and β-cell function in patients with pancreatic dysfunction which is associated with changes in the adipose tissue secretory profile. However, information about adipokines associated with β-cell dysfunction is lacking in pediatric patients with type 1 diabetes. Methods (1) We compared serum concentrations of nicotinamide phosphoribosyltransferase (NAMPT), omentin-1 and caspase-cleaved cytokeratin 18 fragment M30 (CK-18) in pediatric type 1 diabetes patients (n=245) and healthy age, sex and body mass index standard deviation score (BMI-SDS) matched controls (n=243). (2) We investigated the influence of insulin treatment on serum concentrations of NAMPT, omentin-1 and CK-18 in groups of patients with type 1 diabetes stratified according to the duration of their disease: at onset (n=50), ≥6 months and <5 years (n=185), ≥5 and <10 years (n=98), and ≥10 years (n=52). Results Patients at onset compared with healthy controls demonstrated no significant differences in NAMPT levels (p=0.129), whereas omentin-1 levels were elevated (p<0.001) and CK-18 levels were lowered (p=0.034). In contrast, NAMPT and omentin-1 were elevated and CK-18 serum levels were lower in longstanding patients compared to healthy controls (p<0.001). NAMPT serum levels did not change significantly during the duration of type 1 diabetes (p=0.546). At onset, omentin-1 and CK-18 levels were higher than in any group of longstanding type 1 diabetes (p<0.025). Conclusions Altered serum levels of NAMPT, omentin-1 and CK-18 in pediatric type 1 diabetes patients indicate metabolic changes caused by adipose tissue dysregulation which do not normalize during insulin therapy.


2001 ◽  
Vol 120 (5) ◽  
pp. A254-A254
Author(s):  
D SASS ◽  
R SCHOEN ◽  
J WEISSFELD ◽  
L KULLER ◽  
F THAETE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document