scholarly journals Reduced CCR6+IL-17A+Treg Cells in Blood and CCR6-Dependent Accumulation of IL-17A+Treg Cells in Lungs of Patients With Allergic Asthma

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaokun Shen ◽  
Huiyun Zhang ◽  
Hua Xie ◽  
Liping Chen ◽  
Shinan Li ◽  
...  

Human regulatory T (Treg) cells play a central role in controlling allergic inflammation in the airways. A reduced number of peripheral Treg cells and decreased suppressive function have been previously reported in the pathogenesis of allergic asthma. However, the characteristic role of specific Treg cell subsets and their mechanisms in the pathogenesis of allergic asthma remain unclear. In this study, we examined the proportion of different Treg cell subsets in both healthy subjects and patients with allergic asthma using flow cytometry and single-cell RNA sequencing. The migration function of the cells was compared using cell sorting and Transwell experiments. Furthermore, two allergen-challenged mouse models and a cell transfer experiment were used to examine the role of these Treg subsets. We found that the proportion of CD25+Foxp3+CD127- Treg cells in the peripheral blood of patients with allergic asthma was lower than in those of healthy subjects. Furthermore, the circulating Treg cells expressed lower levels of CCR6 and IL-17 compared with healthy subjects. The chemokine from the airway mucosa, CCL20, was abundantly expressed, and Transwell experiments further proved that this chemokine promoted CCR6+ Treg cell migration in vitro. A mouse model induced by house dust mite (HDM) revealed that the number of CCR6+ Treg cells in the lung tissue increased remarkably. The incidence of allergic asthma may be related to an increase in Treg cells secreting IL-17 in the lung tissue. Recruited CCR6+ Treg cells are likely to differentiate into Th17-like cells under the Th17 environment present in the lungs. IL-17 derived from Th17-like cells could be associated with the pathology of allergic asthma by promoting Th17 responses, thereby favoring HDM-induced asthma exacerbations.

Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3428-3430 ◽  
Author(s):  
Olivier Boyer ◽  
David Saadoun ◽  
Julien Abriol ◽  
Mélanie Dodille ◽  
Jean-Charles Piette ◽  
...  

Abstract Patients who are chronically infected with hepatitis C virus (HCV) often develop mixed cryoglobulinemia (MC), a B-cell proliferative disorder with polyclonal activation and autoantibody production. We investigated if MC is associated with a deficit of CD4+CD25+ immunoregulatory T (Treg) cells, which have been shown to control autoimmunity. Because Treg cells express higher amounts of CD25 than activated CD4+ T cells, we analyzed blood CD4+CD25high Treg cells in 69 untreated patients chronically infected with HCV. Treg cell frequency in patients without MC (8.8% ± 2.3%) or with asymptomatic MC (7.4% ± 2.1%) was comparable to that of healthy controls (7.9% ± 1.3%). In contrast, it was significantly reduced in symptomatic MC patients (2.6% ± 1.2%, P < .001) even when compared to a panel of untreated HCV- patients with different inflammatory disorders (6.2% ± 0.8%, P < .0001). In symptomatic MC patients, the purified remaining CD4+CD25+ T cells retained suppressive activity in vitro. These results, together with experimental data showing that depletion of Treg cells induces autoimmunity, suggest a major role of Treg cell deficiency in HCV-MC vasculitis and this is the first report of a quantitative Treg cell deficiency in virus-associated autoimmunity. (Blood. 2004; 103:3428-3430)


2009 ◽  
Vol 116 (8) ◽  
pp. 639-649 ◽  
Author(s):  
Richard J. Mellanby ◽  
David C. Thomas ◽  
Jonathan Lamb

There has been considerable historical interest in the concept of a specialist T-cell subset which suppresses over-zealous or inappropriate T-cell responses. However, it was not until the discovery that CD4+CD25+ T-cells had suppressive capabilities both in vitro and in vivo that this concept regained credibility and developed into one of the most active research areas in immunology today. The notion that in healthy individuals there is a subset of Treg-cells (regulatory T-cells) involved in ‘policing’ the immune system has led to the intensive exploration of the role of this subset in disease resulting in a number of studies concluding that a quantitative or qualitative decline in Treg-cells is an important part of the breakdown in self-tolerance leading to the development of autoimmune diseases. Although Treg-cells have subsequently been widely postulated to represent a potential immunotherapy option for patients with autoimmune disease, several studies of autoimmune disorders have demonstrated high numbers of Treg-cells in inflamed tissue. The present review highlights the need to consider a range of other factors which may be impairing Treg-cell function when considering the mechanisms involved in the breakdown of self-tolerance rather than focussing on intrinsic Treg-cell factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


1993 ◽  
Vol 264 (1) ◽  
pp. H190-H195 ◽  
Author(s):  
J. D. Imig ◽  
D. Gebremedhin ◽  
D. R. Harder ◽  
R. J. Roman

The effect of erythrocytes (red blood cells, RBC) on vascular tone in the renal microcirculation was examined using the juxtamedullary nephron microvascular preparation perfused in vitro with a physiological salt solution containing 5% albumin. The basal diameters of the arcuate, interlobular, proximal, and distal afferent arterioles averaged 444 +/- 24, 74 +/- 3, 29 +/- 1, and 19 +/- 1 micron, respectively, when perfused with a cell-free solution at a pressure of 80 mmHg. The diameters of the arcuate and interlobular arteries increased by 14 +/- 4 and 13 +/- 4%, respectively, whereas the diameter of the proximal and distal portions of the afferent arterioles decreased by 7 +/- 2% when perfusion pressure was elevated from 80 to 160 mmHg. The addition of RBC to the perfusate reduced the basal diameters of interlobular and afferent arterioles by 11 +/- 4 and 15 +/- 3%, respectively. The maximal vasoconstrictor response was seen after the addition of only 1% RBC to the perfusate. Removal of platelets did not block the vasoconstrictor response to addition of RBC to the perfusate. The role of endothelium-derived relaxing factor (EDRF) in the vasoconstrictor response to RBC was studied by addition of nitric oxide synthase inhibitor, N omega-nitro-L-arginine (L-NNA, 100 microM) to the perfusate. L-NNA reduced the basal diameters of interlobular and afferent arterioles by 7 +/- 3 and 9 +/- 3%, respectively, and abolished the vasoconstrictor response to RBC. L-NNA had no effect on the pressure-diameter relationships of the preglomerular vasculature when added to perfusates already containing RBC.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shiyao Xue ◽  
Hongdong Han ◽  
Shunli Rui ◽  
Mengliu Yang ◽  
Yizhou Huang ◽  
...  

Previous studies on serum fetuin-B (fetuin-like protein IRL685) have investigated its association with T2DM; however, the reason for the variation in serum fetuin-B and its regulatory factors in metabolic disease remain unclear. Here, we evaluated serum fetuin-B levels in women with newly diagnosed MetS and performed multiple interventions to investigate the role of fetuin-B in the pathogenesis of MetS. Serum fetuin-B levels were assessed using ELISA. Bioinformatics analysis was performed to analyze fetuin-B-related genes and signaling pathways. Additionally, oxidative stress parameters were measured in the in vitro study. For subgroup analyses, we performed EHC, OGTT, and treatment with a GLP-1RA to investigate the regulatory factors of serum fetuin-B. We found that in comparison with healthy subjects, serum fetuin-B levels were markedly increased in women with MetS. Further, serum fetuin-B showed a positive correlation with WHR, FAT%, TG, FBG, HbA1c, FIns, HOMA-IR, VAI, and LAP. Bioinformatics analysis revealed that most fetuin-B-related core genes were involved in cholesterol metabolism and fat decomposition. Consistent with this finding, multivariate regression analysis showed that triglyceride content and WHR were independently associated with serum fetuin-B. We also observed that serum fetuin-B levels were markedly elevated in healthy subjects after glucose loading and in women with MetS during EHC. In vitro, overexpression of fetuin-B promoted oxidative stress in HepG2 cell. After 6 months of treatment with a GLP-1RA, serum fetuin-B levels in women with MetS decreased following an improvement in metabolism and insulin sensitivity. Therefore, serum fetuin-B is associated with MetS, which may serve as a biomarker of oxidative stress. This trial is registered with ChiCTR-OCC-11001422.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


2005 ◽  
Vol 201 (5) ◽  
pp. 769-777 ◽  
Author(s):  
Allison L. Bayer ◽  
Aixin Yu ◽  
Dennis Adeegbe ◽  
Thomas R. Malek

Although many aspects of CD4+CD25+ T regulatory (Treg) cell development remain largely unknown, signaling through the IL-2R represents one feature for the production of Treg cells. Therefore, the present study was undertaken to further define early developmental steps in the production of Treg cells, including a more precise view on the role of interleukin (IL)-2 in this process. After adoptive transfer of wild-type Treg cells into neonatal IL-2Rβ−/− mice, only a small fraction of donor Treg cells selectively seeded the lymph node (LN). These donor Treg cells underwent rapid and extensive IL-2–dependent proliferation, followed by subsequent trafficking to the spleen. Thus, IL-2 is essential for Treg cell proliferation in neonatal LN. The number and distribution of Treg cells in the periphery of normal neonatal mice closely paralleled that seen for IL-2Rβ−/− mice that received Treg cells. However, for normal neonates, blockade of IL-2 decreased Treg cells in both the thymus and LN. Therefore, two steps of Treg cell development depend upon IL-2 in neonatal mice, thymus production, and subsequent expansion in the LN.


Sign in / Sign up

Export Citation Format

Share Document