scholarly journals Epithelial Aryl Hydrocarbon Receptor Protects From Mucus Production by Inhibiting ROS-Triggered NLRP3 Inflammasome in Asthma

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyue Hu ◽  
Yingchun Shen ◽  
Yilin Zhao ◽  
Ji Wang ◽  
Xin Zhang ◽  
...  

BackgroundDespite long-standing recognition in the significance of mucus overproduction in asthma, its etiology remains poorly understood. Muc5ac is a secretory mucin that has been associated with reduced pulmonary function and asthma exacerbations.ObjectivesWe sought to investigate the immunological pathway that controls Muc5ac expression and allergic airway inflammation in asthma.MethodsCockroach allergen-induced Muc5ac expression and aryl hydrocarbon receptor (AhR) signaling activation was examined in the human bronchial epithelial cells (HBECs) and mouse model of asthma. AhR regulation of Muc5ac expression, mitochondrial ROS (Mito-ROS) generation, and NLRP3 inflammasome was determined by AhR knockdown, the antagonist CH223191, and AhR-/- mice. The role of NLRP3 inflammasome in Muc5ac expression and airway inflammation was also investigated.ResultsCockroach allergen induced Muc5ac overexpression in HBECs and airways of asthma mouse model. Increased expression of AhR and its downstream genes CYP1A1 and CYP1B1 was also observed. Mice with AhR deletion showed increased allergic airway inflammation and MUC5AC expression. Moreover, cockroach allergen induced epithelial NLRP3 inflammasome activation (e.g., NLRP3, Caspase-1, and IL-1β), which was enhanced by AhR knockdown or the antagonist CH223191. Furthermore, AhR deletion in HBECs led to enhanced ROS generation, particularly Mito-ROS, and inhibition of ROS or Mito-ROS subsequently suppressed the inflammasome activation. Importantly, inhibition of the inflammasome with MCC950, a NLRP3-specifc inhibitor, attenuated allergic airway inflammation and Muc5ac expression. IL-1β generated by the activated inflammasomes mediated cockroach allergen-induced Muc5ac expression in HBECs.ConclusionsThese results reveal a previously unidentified functional axis of AhR-ROS-NLRP3 inflammasome in regulating Muc5ac expression and airway inflammation.

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Cheng Cheng ◽  
Huimei Wu ◽  
Muzi Wang ◽  
Lixia Wang ◽  
Hongyun Zou ◽  
...  

Abstract Background: Estrogen has been suggested to play a protective role against airway inflammations, such as asthma. In these processes, the inflammasome nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) partly accounts for the activation of pro-inflammatory factors. The aim of the present study was to investigate whether NLRP3 was involved in the protective effect of estrogen against allergic airway inflammation. Methods: An ovariectomy was performed on female C57BL/6 mice; some were sham-operated (sham). We then sensitized and challenged them with ovalbumin (OVA) to establish an airway inflammation model. Meanwhile, some mice were treated with 17β-estradiol (E2) for 28 days. Results: The expression of NLRP3 inflammasome and its downstream products, caspase-1 and the pro-inflammatory cytokine interleukin (IL)-1β (IL-1β), increased concomitantly with OVA-challenged airway inflammation and decreased with the expression of estrogen receptor β (ERβ). In addition, treating ovariectomized (OVX) mice with E2 dramatically ameliorated airway inflammation via such mechanisms as leukocyte recruitment, mucus production, and secretion of pro-inflammatory cytokines other than IL-18 in bronchoalveolar lavage (BAL) fluid (BALF). Furthermore, E2 suppressed both the mRNA expression and protein expression of NLRP3, caspase-1, and IL-1β. In summary, our study showed that NLRP3 inflammasome activation and pro-inflammatory cytokine production markedly increased in OVA-induced airway inflammation, and E2 effectively abrogated such inflammation by regulating the activation of NLRP3.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2427
Author(s):  
Ivan Qi Han Ngui ◽  
Agampodi Promoda Perera ◽  
Rajaraman Eri

Inflammation is a hallmark in many forms of cancer; with colitis-associated colorectal cancer (CAC) being a progressive intestinal inflammation due to inflammatory bowel disease (IBD). While this is an exemplification of the negatives of inflammation, it is just as crucial to have some degree of the inflammatory process to maintain a healthy immune system. A pivotal component in the maintenance of such intestinal homeostasis is the innate immunity component, inflammasomes. Inflammasomes are large, cytosolic protein complexes formed following stimulation of microbial and stress signals that lead to the expression of pro-inflammatory cytokines. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been extensively studied in part due to its strong association with colitis and CAC. The aryl hydrocarbon receptor (AhR) has recently been acknowledged for its connection to the immune system aside from its role as an environmental sensor. AhR has been described to play a role in the inhibition of the NLRP3 inflammasome activation pathway. This review will summarise the signalling pathways of both the NLRP3 inflammasome and AhR; as well as new-found links between these two signalling pathways in intestinal immunity and some potential therapeutic agents that have been found to take advantage of this link in the treatment of colitis and CAC.


2021 ◽  
Author(s):  
Francesca Alessandrini ◽  
Renske de Jong ◽  
Maria Wimmer ◽  
Ann-Marie Maier ◽  
Isis Fernandez ◽  
...  

The lung epithelial barrier serves as a guardian towards environmental insults and responds to allergen encounter with a cascade of immune reactions that can possibly lead to inflammation. Whether the environmental sensor aryl hydrocarbon receptor (AhR) together with its downstream targets cytochrome P450 (CYP1) family members contribute to the regulation of allergic airway inflammation remains unexplored. By employing knockout mice for AhR and for single CYP1 family members, we found that AhR-/- and CYP1B1-/- but not CYP1A1-/- or CYP1A2-/- animals display enhanced allergic airway inflammation compared to WT. Expression analysis, immunofluorescence staining of murine and human lung sections and bone marrow chimeras suggest an important role of CYP1B1 in non-hematopoietic lung epithelial cells to prevent exacerbation of allergic airway inflammation. Transcriptional analysis of murine and human lung epithelial cells indicates a functional link of AhR to barrier protection/inflammatory mediator signaling upon allergen challenge. In contrast, CYP1B1 deficiency leads to enhanced expression and activity of CYP1A1 in lung epithelial cells and to an increased availability of the AhR ligand kynurenic acid following allergen challenge. Thus, differential CYP1 family member expression and signaling via the AhR in epithelial cells represents an immunoregulatory layer protecting the lung from exacerbation of allergic airway inflammation.


Sign in / Sign up

Export Citation Format

Share Document