scholarly journals High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue

2021 ◽  
Vol 12 ◽  
Author(s):  
Alf S. Dalum ◽  
Aurora Kraus ◽  
Shanawaz Khan ◽  
Erna Davydova ◽  
Dimitri Rigaudeau ◽  
...  

The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts (“Percomorphs”), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.

2020 ◽  
Vol 5 (53) ◽  
pp. eaay4218
Author(s):  
Dejene M. Tufa ◽  
Ashley M. Yingst ◽  
George Devon Trahan ◽  
Tyler Shank ◽  
Dallas Jones ◽  
...  

Innate lymphoid cells (ILCs) develop from common lymphoid progenitors (CLPs), which further differentiate into the common ILC progenitor (CILP) that can give rise to both ILCs and natural killer (NK) cells. Murine ILC intermediates have recently been characterized, but the human counterparts and their developmental trajectories have not yet been identified, largely due to the lack of homologous surface receptors in both organisms. Here, we show that human CILPs (CD34+CD117+α4β7+Lin−) acquire CD48 and CD52, which define NK progenitors (NKPs) and ILC precursors (ILCPs). Two distinct NK cell subsets were generated in vitro from CD34+CD117+α4β7+Lin−CD48−CD52+ and CD34+CD117+α4β7+Lin−CD48+CD52+ NKPs, respectively. Independent of NKPs, ILCPs exist in the CD34+CD117+α4β7+Lin−CD48+CD52+ subset and give rise to ILC1s, ILC2s, and NCR+ ILC3s, whereas CD34+CD117+α4β7+Lin−CD48+CD52− ILCPs give rise to a distinct subset of ILC3s that have lymphoid tissue inducer (LTi)–like properties. In addition, CD48-expressing CD34+CD117+α4β7+Lin− precursors give rise to tissue-associated ILCs in vivo. We also observed that the interaction of 2B4 with CD48 induced differentiation of ILC2s, and together, these findings show that expression of CD48 by human ILCPs modulates ILC differentiation.


2017 ◽  
Vol 214 (8) ◽  
pp. 2331-2347 ◽  
Author(s):  
Kathrin Nussbaum ◽  
Sara H. Burkhard ◽  
Isabel Ohs ◽  
Florian Mair ◽  
Christoph S.N. Klose ◽  
...  

Innate lymphoid cells (ILCs) have been classified into “functional subsets” according to their transcription factor and cytokine profiles. Although cytokines, such as IL-12 and IL-23, have been shown to shape plasticity of ILCs, little is known about how the tissue microenvironment influences the plasticity, phenotype, and function of these cells. Here, we show clearly demarcated tissue specifications of Rorc-dependent ILCs across lymphoid and nonlymphoid organs. Although intestinal Rorc fate map–positive (Rorcfm+) ILCs show a clear ILC3 phenotype, lymphoid tissue–derived Rorcfm+ ILCs acquire an natural killer (NK) cell/ILC1-like phenotype. By adoptively transferring Rorcfm+ ILCs into recipient mice, we show that ILCs distribute among various organs and phenotypically adapt to the tissue environment they invade. When investigating their functional properties, we found that only lymphoid-tissue resident Rorcfm+ ILCs can suppress tumor growth, whereas intestinal Rorcfm− ILC1s or NK cells fail to inhibit tumor progression. We thus propose that the tissue microenvironment, combined with ontogeny, provides the specific function, whereas the phenotype is insufficient to predict the functional properties of ILCs.


1968 ◽  
Vol 128 (6) ◽  
pp. 1281-1307 ◽  
Author(s):  
Robert N. Taub ◽  
Eugene M. Lance

The effects of heterologous rabbit anti-mouse lymphocyte antiserum on the morphology of lymphoid and other tissues was investigated in CBA mice. The lymphoid tissues exhibited characteristic changes specific for ALS treatment, which were an invariable accompaniment to its immunosuppressive effects. These consisted of peripheral lymphopenia occurring at some time during a course of ALS treatment and persistent depletion of small lymphocytes in lymph node paracortical areas and splenic follicular periarteriolar zones. The thymic histology was generally well preserved. It is suggested that the relevant lesions reflect a rapid depletion of the pool of recirculating lymphocytes, possibly by a primary cytotoxic effect exerted on cells peripheral to lymphoid tissue. Other histologic features attendant to the administration of ALS were accounted for as consequences of immunization of ALS recipients to rabbit serum constituents or by the deleterious effects of antibodies directed against tissues other than lymphoid cells.


1990 ◽  
Vol 171 (4) ◽  
pp. 979-996 ◽  
Author(s):  
R A Daynes ◽  
B A Araneo ◽  
T A Dowell ◽  
K Huang ◽  
D Dudley

We investigated the capacity of murine T lymphocytes, isolated from various lymphoid organs of normal or antigen-primed donors, to produce IL-2 or IL-4 after activation with anti-CD3 or specific antigen. Our results established that T cells resident within lymphoid organs being drained by nonmucosal tissue sites (e.g., axillary, inguinal, brachial lymph nodes, or spleen) produced IL-2 as the predominant T cell growth factor (TCGF) after activation. Conversely, activated T cells from lymphoid organs being drained by mucosal tissues (Peyer's patches, and cervical, periaortic, and parathymic lymph nodes) produced IL-4 as the major species of TCGF. Analysis of the lymphoid tissues obtained from adoptive recipients of antigen-primed lymphocytes provided by syngeneic donors provided evidence that direct influences were being exerted on T cells during their residence within defined lymphoid compartments. These lymphoid tissue influences appeared to be responsible for altering the potential of resident T cells to produce distinct species of TCGF. Steroid hormones, known transcriptional enhancers and repressors of specific cellular genes, were implicated in the controlling mechanisms over TCGF production. Glucocorticoids (GCs) were found to exert a systemic effect on all recirculating T cells, evidenced by a marked dominance in IL-4 production by T cells obtained from all lymphoid organs of GC-treated mice, or after a direct exposure of normal lymphoid cells to GCs in vitro before cellular activation with T cell mitogens. Further, the androgen steroid DHEA appeared to be responsible for providing an epigenetic influence to T cells trafficking through peripheral lymphoid organs. This steroid influence resulted in an enhanced potential for IL-2 secretion after activation. Anatomic compartmentalization of the DHEA-facilitated influence appears to be mediated by differential levels of DHEA-sulfatase in lymphoid tissues. DHEA-sulfatase is an enzyme capable of converting DHEA-sulfate (inactive) to the active hormone DHEA. We find very high activities of this enzyme isolated in murine macrophages. The implications of our findings to immunobiology are very great, and indicate that T cells, while clonally restricted for antigen peptide recognition, also appear to exhibit an extreme flexibility with regards to the species of lymphokines they produce after activation. Regulation of this highly conservative mechanism appears to be partially, if not exclusively, controlled by cellular influences being exerted by distinct species of steroid hormones, supplied in an endocrine or a paracrine manner where they mediate either systemic or tissue-localized influences, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 23 (4) ◽  
pp. 697-707 ◽  
Author(s):  
Rodolfo Mastropasqua ◽  
Luca Agnifili ◽  
Vincenzo Fasanella ◽  
Mario Nubile ◽  
Agbeanda A. Gnama ◽  
...  

AbstractOcular surface diseases (OSDs) represent a widely investigated field of research given their growing incidence and the negative impact on quality of life. During OSDs, cytokines generated by damaged epithelia trigger and deregulate the lymphoid cells composing the eye-associated lymphoid tissues, inducing an immune-mediated chronic inflammation that amplifies and propagates the disease during time. The conjunctiva-associated lymphoid tissue (CALT), given its particular position that permits immune cells covering the cornea, might play a crucial role in the development of OSDs. Despite the recognized inflammatory role of mucosa-associated lymphoid tissues in other stations taking contact with the external environment (gut or bronchus), CALT did not gain the deserved consideration. In the last years, the diffusion of the in vivo confocal microscopy (IVCM) stimulated the interest to CALT, especially in dry eye, ocular allergy, and glaucoma. Though the initial stimuli were different, IVCM documented similar changes, represented by increased lymphoid cells within the diffuse layer, follicles and interfollicular spaces. These findings, which need to be validated by immunohistology, support the CALT stimulation during OSDs. However, while an involvement of the CALT in OSDs is hypothesizable, the exact role of this structure in their pathogenesis remains unclear and warrants further investigations.


2019 ◽  
Vol 19 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Thea Magrone ◽  
Emilio Jirillo

Background:Secondary lymphoid organs (SLO) are distributed in many districts of the body and, especially, lymph nodes, spleen and gut-associated lymphoid tissue are the main cellular sites. On the other hand, tertiary lymphoid organs (TLO) are formed in response to inflammatory, infectious, autoimmune and neoplastic events. </P><P> Developmental Studies: In the present review, emphasis will be placed on the developmental differences of SLO and TLO between small intestine and colon and on the role played by various chemokines and cell receptors. Undoubtedly, microbiota is indispensable for the formation of SLO and its absence leads to their poor formation, thus indicating its strict interaction with immune and non immune host cells. Furthermore, food antigens (for example, tryptophan derivatives, flavonoids and byphenils) bind the aryl hydrocarbon receptor on innate lymphoid cells (ILCs), thus promoting the development of postnatal lymphoid tissues. Also retinoic acid, a metabolite of vitamin A, contributes to SLO development during embryogenesis. Vitamin A deficiency seems to account for reduction of ILCs and scarce formation of solitary lymphoid tissue. </P><P> Translational Studies: The role of lymphoid organs with special reference to intestinal TLO in the course of experimental and human disease will also be discussed. </P><P> Future Perspectives: Finally, a new methodology, the so-called “gut-in-a dish”, which has facilitated the in vitro interaction study between microbe and intestinal immune cells, will be described.


2007 ◽  
Vol 204 (5) ◽  
pp. 1119-1130 ◽  
Author(s):  
Markus D. Boos ◽  
Yoshifumi Yokota ◽  
Gerard Eberl ◽  
Barbara L. Kee

The Id2 transcriptional repressor is essential for development of natural killer (NK) cells, lymphoid tissue–inducing (LTi) cells, and secondary lymphoid tissues. Id2 was proposed to regulate NK and LTi lineage specification from multipotent progenitors through suppression of E proteins. We report that NK cell progenitors are not reduced in the bone marrow (BM) of Id2−/− mice, demonstrating that Id2 is not essential for NK lineage specification. Rather, Id2 is required for development of mature (m) NK cells. We define the mechanism by which Id2 functions by showing that a reduction in E protein activity, through deletion of E2A, overcomes the need for Id2 in development of BM mNK cells, LTi cells, and secondary lymphoid tissues. However, mNK cells are not restored in the blood or spleen of Id2−/−E2A−/− mice, suggesting a role for Id2 in suppression of alternative E proteins after maturation. Interestingly, the few splenic mNK cells in Id2−/− and Id2−/−E2A−/− mice have characteristics of thymus-derived NK cells, which develop in the absence of Id2, implying a differential requirement for Id2 in BM and thymic mNK development. Our findings redefine the essential functions of Id2 in lymphoid development and provide insight into the dynamic regulation of E and Id proteins during this process.


1999 ◽  
Vol 195 (2) ◽  
pp. 161-171
Author(s):  
J. H. CONNOLLY ◽  
P. J. CANFIELD ◽  
S. J. McCLURE ◽  
R. J. WHITTINGTON

The gross and histological appearance and the distribution of T and B lymphocytes and plasma cells are described for lymphoid tissues obtained from 15 platypuses. The spleen was bilobed and surrounded by a thick capsule of collagen, elastic fibres and little smooth muscle. White pulp was prominent and included germinal centres and periarterial lymphoid sheaths. Red pulp contained haematopoietic tissue. A thin lobulated thymus was located within the mediastinum overlying the heart. The cortex of lobules consisted of dense aggregates of small and medium lymphocytes, scattered macrophages and few reticular epithelial cells. In the medulla, Hassall's corpuscles were numerous, lymphocytes were small and less abundant, and reticular cells were more abundant than in the cortex. Lymphoid nodules scattered throughout loose connective tissue in cervical, pharyngeal, thoracic, mesenteric and pelvic sites measured 790±370 μm (mean±S.D., n = 39) in diameter, the larger of which could be observed macroscopically. These consisted of single primary or secondary follicles supported by a framework of reticular fibres. Macrophages were common in the germinal centres. The platypus had a full range of gut-associated lymphoid tissue. No tonsils were observed macroscopically but histologically they consisted of submucosal follicles and intraepithelial lymphocytes. Peyer's patches were not observed macroscopically but histologically they consisted of several prominent submucosal secondary follicles in the antimesenteric wall of the intestine. Caecal lymphoid tissue consisted of numerous secondary follicles in the submucosa and densely packed lymphocytes in the lamina propria. Bronchus-associated lymphoid tissue was not observed macroscopically but was identified in 7 of 11 platypus lungs assessed histologically. Lymphoid cells were present as primary follicles associated with bronchi, as aggregates adjacent to blood vessels and as intraepithelial lymphocytes. The distribution of T lymphocytes, identified with antihuman CD3 and CD5, and B lymphocytes and plasma cells, identified with antihuman CD79a and CD79b and antiplatypus immunoglobulin, within lymphoid tissues in the platypus was similar to that described in therian mammals except for an apparent relative paucity of B lymphocytes. This study establishes that the platypus has a well-developed lymphoid system which is comparable in histological structure to that in therian mammals. It also confirms the distinctiveness of its peripheral lymphoid tissue, namely lymphoid nodules. Platypus lymphoid tissue has all the essential cell types, namely T and B lymphocytes and plasma cells, to mount an effective immune response against foreign antigens.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 993-993
Author(s):  
Youssef Youssef ◽  
Ansel P. Nalin ◽  
Jesse Kowalski ◽  
Megan Broughton ◽  
Matthew Lordo ◽  
...  

Abstract Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) whose development and anti-tumor functions can be critical for the successful treatment and long-term disease-free survival of patients with hematologic malignancies. In humans, NK cells derive from bone marrow resident hematopoietic progenitor cells that traffic to secondary lymphoid tissues (SLTs) where they complete their terminal differentiation and maturation through a series of developmental stages before returning to the blood as mature NK cells. Although major stages of human NK cell development in SLTs have been clearly defined according to the differential surface expression of CD34, CD117, CD94, NKp80, CD16, and CD57 among lineage antigen (Lin) negative lymphocytes, continued investigation has revealed additional phenotypic and functional heterogeneity at each developmental stage. Through extensive ex vivo single-cell RNA sequencing and flow cytometry analyses we have identified two subsets of tonsil-resident Lin -CD34 -CD117 +/-CD94 +NKp80 -CD16 -CD57 - stage 4A NK cells. These two subsets differ in their expression of the inhibitory receptor, CD200R1, which is not expressed by mature NK cells in the peripheral blood from healthy individuals. The majority of stage 4A cells expressed high amounts of surface CD200R1, which correlated with low gene and undetectable protein expression of intracellular cytolytic granules (perforin and granzymes A, B, K, and M), killer immunoglobulin-like receptors (KIRs), and transcription factors required for terminal NK cell maturation (EOMES, T-BET). In addition, upon ex vivo stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin, CD200R1 + stage 4A NKDIs did not produce interferon-gamma (IFN-g), a hallmark feature of mature NK cells. In contrast, many CD200R1 - stage 4A cells constitutively expressed perforin, granzymes, EOMES, and/or T-BET; many expressed KIRs; and many produced IFN-g upon ex vivo stimulation. Furthermore, the frequency of KIR + cells among CD200R1 - stage 4A cells was significantly higher than that among autologous tonsil stage 4B NK cells (Lin -CD34 -CD117 +/-CD94 +NKp80 +CD16 -CD57 -) (20.8 ± 1.65 vs. 8.12 ± 1.66; p &lt; 0.01; n = 14), suggesting that as a population CD200R1 - stage 4A cells are potentially out of sequence in terms of the linear NK cell developmental pathway. Based on these ex vivo findings, we hypothesized that CD200R1 + stage 4A cells represent NK cell precursors, whereas the CD200R1 - stage 4A population contains more mature NK cells that lack NKp80, CD16, and CD57. To further address this hypothesis and to determine their ex vivo potentials for NK cell and non-NK ILC differentiation, we cultured CD200R1 + and CD200R1 - stage 4A cells in vitro in the presence of OP9-DL1 stroma and recombinant human IL-7 and IL-15, conditions previously shown to support all human ILC and NK cell subset differentiation. Under these conditions, both stage 4A populations generated NKp80 + NK cells in bulk and single-cell clonal assays, whereas neither population gave rise to ILC2s (CD294 +) which precede stage 4A NK cells in the developmental scheme. However, while the majority of cultures derived from CD200R1 + stage 4A clones contained ILC3s (CD94 -NKp44 +), significantly fewer clones from CD200R1 - stage 4A cells produced ILC3s (7 of 26 CD200R1 - clones vs. 20 of 23 CD200R1 + clones; p = 0.000587). Moreover, none of the CD200R1 - stage 4A-derived clonal cultures that contained KIR + NK cells contained ILC3s, suggesting that the majority of CD200R1 - stage 4A cells are lineage committed NK cells. Collectively, these data further characterize the heterogeneity of the human tonsil stage 4A NK cell population and identify CD200R1 as a marker distinguishing uncommitted precursor cells from a minor population of cells with otherwise mature NK-associated phenotype and function. In light of the role of CD200R1 in regulating lymphocyte functions in the setting of cancer, further research is warranted to determine its potential role(s) in regulating human NK cell development. Disclosures Blachly: KITE: Consultancy, Honoraria; INNATE: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document