scholarly journals CD38 Defines a Subset of B Cells in Rainbow Trout Kidney With High IgM Secreting Capacities

2021 ◽  
Vol 12 ◽  
Author(s):  
Diana Martín ◽  
Pedro Perdiguero ◽  
Esther Morel ◽  
Irene Soleto ◽  
J. German Herranz-Jusdado ◽  
...  

CD38 is a multifunctional molecule that functions both as a transmembrane signaling receptor and as an ectoenzyme with important roles in cell adhesion, calcium regulation and signal transduction. Within the B cell linage, CD38 is expressed in diverse murine B cell subsets, with highest levels in innate B cell subpopulations such as marginal zone (MZ) B cells or B1 cells. In humans, however, CD38 is transiently expressed on early lymphocyte precursors, is lost on mature B cells and is consistently expressed on terminally differentiated plasma cells. In the present work, we have identified two homologues of mammalian CD38 in rainbow trout (Oncorhynchus mykiss), designating them as CD38A and CD38B. Although constitutively transcribed throughout different tissues in homeostasis, both CD38A and CD38B mRNA levels were significantly up-regulated in head kidney (HK) in response to a viral infection. In this organ, after the generation of a specific monoclonal antibody (mAb) against CD38A, the presence of CD38A+ populations among IgM+ B cells and IgM- leukocytes was investigated by flow cytometry. Interestingly, the percentage of IgM+CD38A+ B cells increased in response to an in vitro stimulation with inactivated Aeromonas salmonicida. Finally, we demonstrated that HK IgM+CD38A+ B cells had an increased IgM secreting capacity than that of cells lacking CD38A on the cell surface, also showing increased transcription levels of genes associated with B cell differentiation. This study strongly suggests a role for CD38 on the B cell differentiation process in teleosts, and provides us with novel tools to discern between B cell subsets in these species.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Irene Soleto ◽  
Esther Morel ◽  
Estefanía Muñoz-Atienza ◽  
Patricia Díaz-Rosales ◽  
Carolina Tafalla

Abstract As B cells are singularly equipped with a B cell receptor (BCR) and a range of innate receptors, they are able to integrate both antigen-specific and innate signals, with the latter being essential to reach an adequate level of activation. Whether teleost B cells sense pathogens through innate mechanisms has not yet been explored, despite the fact that fish B cells display a wider array of innate receptors than many mammalian B cell subsets. Hence, in the current study, we have investigated the effects of inactivated Aeromonas salmonicida, a Gram negative rainbow trout pathogen, on trout splenic IgM+ B cells in vitro in the presence or absence of different inhibitors of Toll-like receptor (TLR) signalling, to establish to what degree innate signals are contributing to the activation of B cells in teleosts. Our results demonstrate that most of the effects that A. salmonicida exerts on trout IgM+ B cells are significantly blocked in the presence of inhibitors of MyD88 and TRIF, important nodes in TLR signal pathways. Thus, the data presented demonstrates that, also in teleost, TLR signalling is essential for the activation of IgM+ B cells. These results will be useful for the future optimization of novel vaccines and adjuvants.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1300-1300
Author(s):  
Srividya Swaminathan ◽  
Huining Kang ◽  
Richard C. Harvey ◽  
Chuanxin Huang ◽  
Maike Buchner ◽  
...  

Abstract Abstract 1300 Background: BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) is required for class-switch recombination and somatic hypermutation of immunoglobulin genes during affinity maturation of mature germinal center B cells. We and others found that BACH2 is strongly upregulated in BCR-ABL1-transformed acute lymphoblastic leukemia (Ph+ ALL) cells upon treatment with tyrosine kinase inhibitors (TKI). Results: Bach2 mRNA levels are significantly lower in Ph+ ALL (n=72) compared to normal human bone marrow pre-B cells (n=10). Studying gene expression in a clinical trial for children with high risk ALL (Children's Oncology Group, P9906; n=207), we found in a multivariate analysis that high Bach2 levels at the time of diagnosis represents an independent predictor of favorable clinical outcome (negative MRD at day and higher overall and relapse-free survival; p<0.0001). We next studied 49 sample pairs from patients with childhood ALL at diagnosis and relapse. In 44 of these sample pairs, the relapse sample showed drastically reduced mRNA levels of Bach2 (p=0.019), suggesting that loss of BACH2 expression is associated with relapse of childhood ALL. A comparison of the methylation status of BACH2 promoter of normal pre-B cells (n=5), with Ph+ ALL cells (n=70) revealed that CpG islands in the BACH2 promoter were heavily hypermethylated in the leukemia samples. These findings are also consistent with genomic analyses on patient derived samples and the identification of small deletions at 6q15 in 4 of 11 cases of childhood ALL cases that all span the BACH2 locus. To study the role of Bach2 in pre-B ALL in a genetic experiment, we transformed pre-B cells from Bach2−/− mice with BCR-ABL1. We observed that Bach2−/− normal pre-B cells lack the ability to counterselect pre-B cell clones that failed to undergo successful V(D)J rearrangement. In the absence of Bach2, a significant number of B cells survive even though they failed to rearrange immunoglobulin heavy chain genes. Besides this unexpected role in early B cell differentiation, quantitative RT-PCR and Western blot confirmed that BACH2 is also required for expression of the tumor suppressors Cdkn2a (Arf), p53 and Btg2. Consistent with extremely low protein levels of Arf and p53 in Bach2−/− leukemia cells, Bach2−/− ALL cells are more resistant to TKI-treatment, more actively proliferating (increased S-phase; p=0.02) and exhibit a ∼90-fold increased ability to form colonies in methyl cellulose (p=0.001). Studying Cre-mediated inducible deletion of p53 in p53-fl/fl leukemia cells, we found that Bach2-induced tumor suppression is largely dependent on p53 function. Forced overexpression of Myc results in oncogene-induced senescence (OIS) followed by apoptosis. Whereas Bach2+/+ leukemia cells are non-permissive to forced Myc expression and die within four days after Myc induction, Bach2−/− ALL cells tolerate forced expression of Myc and evade OIS and subsequent cell death. Similarly, overexpression of Myc alone fails to transform Bach2+/+ pre-B cells. By contrast, retroviral overexpression of Myc results in rapid transformation and growth factor-independence of Bach2−/− pre-B cells. Bach2−/− Myc-high pre-B cells cause fatal leukemia in 100% of recipient mice within 22 days, whereas all mice that received Bach2+/+ Myc-high pre-B cells survived without signs of disease until day 67, when all mice were sacrificed and analyzed for MRD by flow cytometry and PCR. No evidence of MRD was detected in most mice injected with Bach2+/+ Myc-high pre-B cells. Three mice had positive MRD PCR findings, however, at 4 log orders below findings in mice injected with Bach2−/−Myc-high pre-B cells. Conclusions: Our findings identify Bach2 as a novel tumor suppressor upstream of p53 in pre-B ALL. Bach2 is a regulator of negative selection during normal pre-B cell differentiation but also limits excessive proliferation of pre-B cell clones by induction of oncogene-induced senescence and activation of p53. In addition, our multivariate analyses identify high expression levels of Bach2 as powerful predictor of favorable clinical outcome in children, which may be useful in future approaches for risk stratification. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3605-3615 ◽  
Author(s):  
Pierre Carayon ◽  
Jean Marchand ◽  
Danielle Dussossoy ◽  
Jean-Marie Derocq ◽  
Omar Jbilo ◽  
...  

Two subtypes of G-protein–coupled cannabinoid receptors have been identified to date: the CB1 central receptor subtype, which is mainly expressed in the brain, and the CB2 peripheral receptor subtype, which appears particularly abundant in the immune system. We investigated the expression of CB2 receptors in leukocytes using anti-CB2 receptor immunopurified polyclonal antibodies. We showed that peripheral blood and tonsillar B cells were the leukocyte subsets expressing the highest amount of CB2 receptor proteins. Dual-color confocal microscopy performed on tonsillar tissues showed a marked expression of CB2 receptors in mantle zones of secondary follicles, whereas germinal centers (GC) were weakly stained, suggesting a modulation of this receptor during the differentiation stages from virgin B lymphocytes to memory B cells. Indeed, we showed a clear downregulation of CB2 receptor expression during B-cell differentiation both at transcript and protein levels. The lowest expression was observed in GC proliferating centroblasts. Furthermore, we investigated the effect of the cannabinoid agonist CP55,940 on the CD40-mediated proliferation of both virgin and GC B-cell subsets. We found that CP55,940 enhanced the proliferation of both subsets and that this enhancement was blocked by the CB2 receptor antagonist SR 144528 but not by the CB1 receptor antagonist SR 141716. Finally, we observed that CB2 receptors were dramatically upregulated in both B-cell subsets during the first 24 hours of CD40-mediated activation. These data strongly support an involvement of CB2 receptors during B-cell differentiation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243769
Author(s):  
Florian Dubois ◽  
Anne Gaignerie ◽  
Léa Flippe ◽  
Jean-Marie Heslan ◽  
Laurent Tesson ◽  
...  

The success of inducing human pluripotent stem cells (hIPSC) offers new opportunities for cell-based therapy. Since B cells exert roles as effector and as regulator of immune responses in different clinical settings, we were interested in generating B cells from hIPSC. We differentiated human embryonic stem cells (hESC) and hIPSC into B cells onto OP9 and MS-5 stromal cells successively. We overcame issues in generating CD34+CD43+ hematopoietic progenitors with appropriate cytokine conditions and emphasized the difficulties to generate proper hematopoietic progenitors. We highlight CD31intCD45int phenotype as a possible marker of hematopoietic progenitors suitable for B cell differentiation. Defining precisely proper lymphoid progenitors will improve the study of their lineage commitment and the signals needed during the in vitro process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Li ◽  
Qin Zeng ◽  
Shuyi Wang ◽  
Mengyuan Li ◽  
Xionghui Chen ◽  
...  

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


2013 ◽  
Vol 210 (13) ◽  
pp. 2823-2832 ◽  
Author(s):  
Beate Heizmann ◽  
Philippe Kastner ◽  
Susan Chan

Pre-B cell receptor (pre-BCR) signaling and migration from IL-7–rich environments cooperate to drive pre-B cell differentiation via transcriptional programs that remain unclear. We show that the Ikaros transcription factor is required for the differentiation of large pre-B to small pre-B cells. Mice deleted for Ikaros in pro/pre-B cells show a complete block of differentiation at the fraction C′ stage, and Ikaros-null pre-B cells cannot differentiate upon withdrawal of IL-7 in vitro. Restoration of Ikaros function rescues pre-B cell differentiation in vitro and in vivo and depends on DNA binding. Ikaros is required for the down-regulation of the pre-BCR, Igκ germline transcription, and Ig L chain recombination. Furthermore, Ikaros antagonizes the IL-7–dependent regulation of &gt;3,000 genes, many of which are up- or down-regulated between fractions C′ and D. Affected genes include those important for survival, metabolism, B cell signaling, and function, as well as transcriptional regulators like Ebf1, Pax5, and the Foxo1 family. Our data thus identify Ikaros as a central regulator of IL-7 signaling and pre-B cell development.


Author(s):  
Tianshu Yu ◽  
Haoyi Wang ◽  
Yajing Zhao ◽  
Yafei Yu ◽  
Yu Hou ◽  
...  

Primary immune thrombocytopenia (ITP) is an autoantibody-mediated hemorrhagic disorder where B cells play an essential role. Previous studies have focused on peripheral blood (PB), but B cells in bone marrow (BM) have not been well characterized. We aimed to explore the profile of B cell subsets and their cytokine environments in BM of ITP patients to further clarify the pathogenesis of the disease. B cell subpopulations and their cytokine/chemokine receptors were detected by flow cytometry. Plasma concentrations of cytokines/chemokines were measured by ELISA. mRNA levels of B cell-related transcription factors were determined by qPCR. Regulatory B cell (Breg) function was assessed by quantifying their inhibitory effects on monocytes and T cells in vitro. Decreased proportions of total B cells, naïve B cells and defective Bregs were observed in ITP patients compared with healthy controls (HCs), whereas elevated frequency of long-lived plasma cells was found in BM of autoantibody-positive patients. No statistical difference was observed in plasmablasts or in short-lived plasma cells between ITP patients and HCs. The immunosuppressive capacity of BM Bregs from ITP patients was considerably weaker than that from HCs. In vivo study using an active ITP murine model revealed that Breg transfusion could significantly alleviate thrombocytopenia. Moreover, over-activation of CXCL13-CXCR5 and BAFF/APRIL systems were found in ITP patient BM. Taken together, B cell subsets in BM were skewed toward a proinflammatory profile in ITP patients, suggesting the involvement of dysregulated BM B cells in the development of the disease.


Sign in / Sign up

Export Citation Format

Share Document