scholarly journals The GT1-TPS Structural Domain Protein From Haemonchus contortus Could Be Suppressive Antigen of Goat PBMCs

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhaohai Wen ◽  
Muhammad Tahir Aleem ◽  
Kalibixiati Aimulajiang ◽  
Cheng Chen ◽  
Meng Liang ◽  
...  

Trehalose phosphate synthase (TPS), a key enzyme in trehalose synthesis, is not present in mammals but critical to the viability of a wide range of lower organisms. However, almost nothing is known about the function of Hc-TPS (GT1-TPS structural domain protein from Haemonchus contortus). In this study, Hc-TPS gene was cloned and the recombinant protein (rHc-TPS) was expressed and purified. The quantitative real-time PCR (qPCR) results showed that Hc-TPS was transcribed at different stages of H. contortus, with higher levels of transcription at the molting and embryo stages. Immunofluorescence analysis showed that Hc-TPS was widely distributed in adults, but the expression was mainly localized on the mucosal surface of the intestine as well as in the embryos of female worms. The impacts of rHc-TPS on peripheral blood mononuclear cell (PBMC) proliferation, nitric oxide (NO) generation, transcriptional expression of cytokines, and related pathways were examined by co-incubating rHc-TPS with goat PBMCs. The results showed that rHc-TPS significantly inhibited PBMC proliferation and NO secretion in a dose-dependent manner. We also found that rHc-TPS activated the interleukin (IL)-10/signal transducer and activator of transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) axis and significantly promoted SOCS3 expression, while inhibiting interferon-gamma (INF-γ), IL-4, IL-9, and IL-2 pathways. Our findings may contribute to understanding the immune evasion mechanism for the parasite during host–parasite interactions and also help to provide ideas for discovering new drug targets.

2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Suppression and modulation of the immune response of the host by nematode parasites have been reported widely. Rhodaneses or thiosulfate: cyanide sulfurtransferases are present in a wide range of organisms, such as archea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homology could bind by goat peripheral blood mononuclear cells (PBMCs) in vivo.Results: In the present study, we cloned and produced recombinant rhodanese protein originated from Haemonchus contortus (rHCRD), which was one of the parasitic nematodes of small ruminants. The effect of this protein on modulating the immunity of goat PBMC and monocyte was studied in the current work. The predominant localization of the natural HCRD protein was verified as the bowel wall and body surface of worms, according to the immunohistochemical tests. It was proved in this study that the serum produced by artificially infecting goats with H. contortus successfully recognized rHCRD which conjugated goat PBMCs. The rHCRD was co-incubated with goat PBMCs to observe the immunomodulatory effect on proliferation, apoptosis and secretion of cytokines exerted by HCRD. The results showed that the interaction of rHCRD suppressed proliferation of goat PBMCs stimulated by ConA but did not induce the apoptosis of goat PBMCs. After rHCRD exposure, the production of TNF-α and IFN-γ were significantly decreased, however, it significantly increased the secretion of IL-10 and TGF-β1 in goat PBMCs. Phagocytotic assay by FITC-dextran internalization showed that rHCRD inhibited the phagocytosis of goat monocytes. Moreover, rHCRD could down-regulate the expression of MHC-II on goat monocytes in a dose-dependent manner. Conclusions: These discoveries proposed a possible target as immunomodulator, which was potentially beneficial to illuminate the interaction between parasites and hosts in the molecular level and hunt for innovative protein species as candidate targets of drug and vaccine.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression.Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD down-regulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo.Methods: In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion.Results: We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD down-regulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression.Conclusions: These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background Modulation of the host immune response by nematode parasites has been widely reported. Rhodaneses (thiosulfate: cyanide sulfurtransferases) are present in a wide range of organisms, such as archaea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homologue could be bound by goat peripheral blood mononuclear cells (PBMCs) in vivo. Methods In the present study, we cloned and produced a recombinant rhodanese protein originating from Haemonchus contortus (rHCRD), a parasitic nematode of small ruminants. rHCRD was co-incubated with goat PBMCs to assess its immunomodulatory effects on proliferation, apoptosis and cytokine secretion. Results We verified that the natural HCRD protein localized predominantly to the bowel wall and body surface of the parasite. We further demonstrated that serum produced by goats artificially infected with H. contortus successfully recognized rHCRD, which bound to goat PBMCs. rHCRD suppressed proliferation of goat PBMCs stimulated by concanavalin A but did not induce apoptosis in goat PBMCs. The production of TNF-α and IFN-γ decreased significantly, whereas secretion of IL-10 and TGF-β1 increased, in goat PBMCs after exposure to rHCRD. rHCRD also inhibited phagocytosis by goat monocytes. Moreover, rHCRD downregulated the expression of major histocompatibility complex (MHC)-II on goat monocytes in a dose-dependent manner, but did not alter MHC-I expression. Conclusions These results propose a possible immunomodulatory target that may help illuminate the interactions between parasites and their hosts at the molecular level and reveal innovative protein species as candidate drug and vaccine targets.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 109
Author(s):  
Muhammad Ehsan ◽  
Muhammad Haseeb ◽  
Ruisi Hu ◽  
Haider Ali ◽  
Muhammad Ali Memon ◽  
...  

During host-parasite interactions, binding of excretory/secretory proteins (ESPs) on the host immune cells is considered the fundamental phase for regulation of immune responses. In this study, gene encoding Haemonchus contortus tropomyosin (Hc-TpMy), was successfully cloned and expressed, and the recombinant protein after host cell surface attachment was evaluated for immune functional analysis with goat peripheral blood mononuclear cells (PBMCs) in vitro. The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant protein was successfully recognized by the sera of rat experimentally infected with rHc-TpMy. The immunofluorescence assay detected attachment of rHc-TpMy on the surface of host PBMCs. Furthermore, immunoregulatory roles of rHc-TpMy on cytokines expression, PBMC proliferation, migration, nitric oxide (NO) production, apoptosis and monocytes phagocytosis were observed. The results showed that expression of IL-4 and IFN-γ cytokines, cell proliferation, NO production and PBMC migration were significantly suppressed by goat PBMCs after co-incubation with rHc-TpMy protein. However, the productions of IL-10, IL-17 and TGF-β1 cytokines, PBMCs apoptosis and monocytes phagocytosis were elevated at dose dependent manner. Our findings indicated that rHc-TpMy is an important ES binding protein exhibit distinct immuno-suppressive roles on goat PBMCs which might be a potential molecular target to control haemonchosis in future.


2019 ◽  
Author(s):  
Janessa Wehr ◽  
Eden L. Sikorski ◽  
Elizabeth Bloch ◽  
Mary S. Feigman ◽  
Noel J. Ferraro ◽  
...  

A growing class of immunotherapeutic agents work by redirecting components of the immune system to recognize specific markers on the surface of cancer cells and initiate a selective immune response. However, such immunotherapeutic modalities will remain confined to a relatively small subgroup of patients until two major hurdles are overcome: (1) the specific targeting of cancer cells relative to healthy cells, and (2) the lack of common targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidic microenvironment of solid tumors to selectively graft the surface of cancer cells with immuno-engager epitopes for directed destruction by components of the immune system. Specifically, conjugates were assembled using an antigen that recruit antibodies present in human serum, and the pH(Low) Insertion Peptide (pHLIP), a unique peptide that selectively target tumors in vivo by anchoring onto cancer cell surfaces in a pH-dependent manner. We established that conjugates can recruit antibodies from human serum to the surface of cancer cells, and induce complement-dependent and antibody-dependent cellular cytotoxicity by peripheral blood mononuclear cells and also an engineered NK cell line. These results suggest that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent the problem of narrow windows of selectivity.


2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


Sign in / Sign up

Export Citation Format

Share Document