scholarly journals The Honey Bee Gene Bee Antiviral Protein-1 Is a Taxonomically Restricted Antiviral Immune Gene

2021 ◽  
Vol 1 ◽  
Author(s):  
Alexander J. McMenamin ◽  
Laura M. Brutscher ◽  
Katie F. Daughenbaugh ◽  
Michelle L. Flenniken

Insects have evolved a wide range of strategies to combat invading pathogens, including viruses. Genes that encode proteins involved in immune responses often evolve under positive selection due to their co-evolution with pathogens. Insect antiviral defense includes the RNA interference (RNAi) mechanism, which is triggered by recognition of non-self, virally produced, double-stranded RNAs. Indeed, insect RNAi genes (e.g., dicer and argonaute-2) are under high selective pressure. Honey bees (Apis mellifera) are eusocial insects that respond to viral infections via both sequence specific RNAi and a non-sequence specific dsRNA triggered pathway, which is less well-characterized. A transcriptome-level study of virus-infected and/or dsRNA-treated honey bees revealed increased expression of a novel antiviral gene, GenBank: MF116383, and in vivo experiments confirmed its antiviral function. Due to in silico annotation and sequence similarity, MF116383 was originally annotated as a probable cyclin-dependent serine/threonine-protein kinase. In this study, we confirmed that MF116383 limits virus infection, and carried out further bioinformatic and phylogenetic analyses to better characterize this important gene—which we renamed bee antiviral protein-1 (bap1). Phylogenetic analysis revealed that bap1 is taxonomically restricted to Hymenoptera and Blatella germanica (the German cockroach) and that the majority of bap1 amino acids are evolving under neutral selection. This is in-line with the results from structural prediction tools that indicate Bap1 is a highly disordered protein, which likely has relaxed structural constraints. Assessment of honey bee gene expression using a weighted gene correlation network analysis revealed that bap1 expression was highly correlated with several immune genes—most notably argonaute-2. The coexpression of bap1 and argonaute-2 was confirmed in an independent dataset that accounted for the effect of virus abundance. Together, these data demonstrate that bap1 is a taxonomically restricted, rapidly evolving antiviral immune gene. Future work will determine the role of bap1 in limiting replication of other viruses and examine the signal cascade responsible for regulating the expression of bap1 and other honey bee antiviral defense genes, including coexpressed ago-2, and determine whether the virus limiting function of bap1 acts in parallel or in tandem with RNAi.

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 653
Author(s):  
Alexander J. McMenamin ◽  
Fenali Parekh ◽  
Verena Lawrence ◽  
Michelle L. Flenniken

Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 267-282 ◽  
Author(s):  
Carl Anderson

Honey bee nectar foragers returning to the hive experience a delay as they search for a receiver bee to whom they transfer their material. In this paper I describe the simulation of the "threshold rule" (Seeley, 1995) which relates the magnitude of this search delay to the probability of performing a recriutment dance — waggle dance, tremble dance, or no dance. Results show that this rule leads to self-organised near-optimal worker allocation in a fluctuating environment, is extremely robust, and operates over a wide range of parameter values. The reason for the robustness appears to be the particular sytem of feedbacks that operate within the system.


2020 ◽  
Vol 12 (10) ◽  
pp. 1882-1894
Author(s):  
Eric A Smith ◽  
Irene L G Newton

Abstract Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 16
Author(s):  
Katie F. Daughenbaugh ◽  
Alex J. McMenamin ◽  
Laura M. Brutscher ◽  
Fenali Parekh ◽  
Michelle L. Flenniken

Honey bee colony losses are influenced by multiple abiotic and biotic factors, including viruses. To investigate the effects of RNA viruses on honey bees, we infected bees with a model virus (Sindbis-GFP) in the presence or absence of double-stranded RNA (dsRNA). In honey bees, dsRNA is the substrate for sequence-specific RNA interference (RNAi)-mediated antiviral defense and is a trigger of sequence-independent\antiviral responses. Transcriptome sequencing identified more than 200 differentially expressed genes, including genes in the RNAi, Toll, Imd, JAK-STAT, and heat shock response pathways, and many uncharacterized genes. To confirm the virus limiting role of two genes (i.e., dicer and mf116383) in honey bees, we utilized RNAi to reduce their expression in vivo and determined that the virus abundance increased. To evaluate the role of the heat shock stress response in antiviral defense, bees were heat stressed post-virus infection and the virus abundance and gene expression were assessed. Heat-stressed bees had reduced virus levels and a greater expression of several heat shock protein encoding genes (hsps) compared to the controls. To determine if these genes are universally associated with antiviral defense, bees were infected with another model virus, Flock House virus (FHV), or deformed wing virus and the gene expression was assessed. The expression of dicer was greater in bees infected with either FHV or Sindbis-GFP compared to the mock-infected bees, but not in the deformed wing virus-infected bees. To further investigate honey bee antiviral defense mechanisms and elucidate the function of key genes (dicer, ago-2, mf116383, and hsps) at the cellular level, primary honey bee larval hemocytes were transfected with dsRNA or infected with the Lake Sinai virus 2 (LSV2). These studies indicate that mf116383 and hsps mediate dsRNA detection and that MF116383 is involved in limiting LSV2 infection. Together, these results further our understanding of honey bee antiviral defense, particularly dsRNA-mediated antiviral responses, at both the individual bee and cellular levels.


Author(s):  
Eric A. Smith ◽  
Kirk E. Anderson ◽  
Vanessa Corby-Harris ◽  
Quinn S. McFrederick ◽  
Audrey J. Parish ◽  
...  

Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named ‘Parasaccharibacter apium’. This bacterium is related to flower-associated microbes such as Saccharibacter floricola , and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among ‘P. apium’, strains in the genus Saccharibacter , and strains in the closely related genus Bombella . Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as ‘P. apium’ and Saccharibacter species are all the same species as Bombella apis . We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.


Apidologie ◽  
2020 ◽  
Vol 51 (6) ◽  
pp. 1125-1132
Author(s):  
Lelania Bilodeau ◽  
Arian Avalos ◽  
Robert G. Danka

AbstractHoney bee (Apis mellifera) breeding programs that use a closed mating system are particularly vulnerable to low genetic diversity. Inadequate diversity at the complementary sex-determiner (csd) locus is problematic and potentially catastrophic in honey bee populations because it causes low brood viability. In typical commercial populations, queens are open mated and csd diversity is fostered by high rates of introgression. In this study, we examine genetic diversity within the highly variable region (HVR) of csd in two stocks bred for resistance to Varroa destructor: Pol-line and Hilo, both of which use closed mating systems. We sampled 47 Pol-line colonies and 41 Hilo colonies and found 60 protein alleles that were condensed into 35 allele groupings by sequence similarity. We found that proportionately, HVR diversity levels were comparable with those in other closed breeding populations as well as open-mated populations of A. mellifera worldwide. Distinct patterns are observed among Pol-line and Hilo csd protein alleles in both the phylogeny and allele frequency distributions, suggesting early divergence of the two stocks. When compared with an African outgroup, both stocks shared alleles with the outgroup, suggesting ancestral lineages are present and not all diversity is due to new mutations. Periodic monitoring of csd diversity is recommended for closed breeding programs. The csd diversity data reported here are currently being used to make breeding decisions in these two mite-resistant populations of honey bees.


2006 ◽  
Vol 56 (4) ◽  
pp. 855-859 ◽  
Author(s):  
Jang-Cheon Cho ◽  
Stephen J. Giovannoni

A Gram-negative, chemoheterotrophic, facultatively anaerobic, slightly halophilic, oval-shaped marine bacterium, designated HTCC2601T, was isolated from the western Sargasso Sea by high-throughput culturing involving dilution to extinction. Although the 16S rRNA gene sequence similarity between the isolate and Salipiger mucosus was 96·5 %, phylogenetic analyses using different treeing algorithms clearly indicated that the strain forms a distinct lineage within a clade containing the recently classified genera Salipiger and Palleronia in the order Rhodobacterales of the Alphaproteobacteria. The DNA–DNA relatedness between strain HTCC2601T and S. mucosus was 26·3 %. Strain HTCC2601T utilized a wide range of carbohydrates, including hexose monomers, sugar alcohols, organic acids and amino acids, as sole carbon sources. The DNA G+C content of strain HTCC2601T was 65·4 mol%, and the predominant constituents of the cellular fatty acids were 18 : 1ω7c (79·7 %) and 11-methyl 18 : 1ω7c (7·5 %). The strain differed from members of the closely related genera Salipiger and Palleronia in its morphological, biochemical and ecological characteristics. On the basis of the taxonomic data obtained in this study, a novel genus and species, Pelagibaca bermudensis gen. nov., sp. nov., is proposed; HTCC2601T (=KCTC 12554T=JCM 13377T) is the type strain of Pelagibaca bermudensis.


2018 ◽  
Author(s):  
Eric A. Smith ◽  
Irene L. G. Newton

AbstractHoney bee queens are central to the success and productivity of their colonies; queens are the only reproductive members of the colony, and therefore queen longevity and fecundity can directly impact overall colony health. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence queen and colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized by a few bacteria, notably an acetic acid bacterium not seen in worker guts: Bombella apis. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes associated with the ecological transition to bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon them the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step towards identifying potential benefits provided by the honey bee queen microbiota to the colony’s matriarch.


2021 ◽  
Author(s):  
Kirk E. Anderson ◽  
Patrick Maes

Abstract BackgroundOverwintering is a major contributor to honey bee colony loss and involves changes in environmental conditions, host physiology and group behavior that influence disease susceptibility. Honey bees possess a secretory head gland that interfaces with the extended colony environment on many levels, producing pro-oxidants, antioxidants and antimicrobial peptides. With the coming of winter, colonies produce a long-lived (diutinus) worker phenotype that survives until environmental conditions improve. We used a known-age worker cohort to investigate microbiome integrity and social gene expression of diutinus workers overwinter. We provide additional context by contrasting host-microbial interactions from warm outdoor and cold indoor overwintering environments. ResultsWe produce the first evidence that social immune gene expression is associated with the core hindgut and colony microbiota in honey bees, and highlight the midgut as a target of opportunistic disease overwinter. We discovered a distinct physiological and microbiological trajectory for diutinus workers that differs drastically from younger, short-lived workers in the colony. Diutinus bees were associated with decreased fungal load and decreased bacterial diversity, and increased core microbiota and longevity. Colonies overwintered indoors maintained a stable or improved microbiota structure and complimentary gene expression overwinter. In contrast, workers from colonies overwintered outdoors in warm southern conditions possessed changes co-occurring throughout the alimentary tract microbiota that suggest opportunistic disease progression and resistance in diutinus workers, but susceptibility to opportunistic disease in younger workers that emerged during the winter, including increases in Enterobacteriaceae, fungal load and bacterial diversity abundance. ConclusionsOur results highlight social selection pressures that shaped the colony and hindgut microbiome with evolution to a perennial life history. The results are consistent with a “group level” explanation of social immunity, including host associations with the colony microbiota, and a social immune response by long-lived diutinus workers to accompany microbial opportunism. The cost/benefit ratio associated with limited expression of the diutinus phenotype may be a strong determinant of colony survival overwinter. The relationship of colony and gut microbiota with social immune function highlights the range of host-microbial interaction associated with the honey bee superorganism, and its potential influence on colony health, disease resistance and gut integrity.


Diversity ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Aleš Gregorc ◽  
Snežana Jurišić ◽  
Blair Sampson

A high concentration of hydroxymethylfurfural (HMF) (e.g., 15 mg HMF per kg honey) indicates quality deterioration for a wide range of foods. In honey bee colonies, HMF in stored honey can negatively affect bee health and survival. Therefore, in the laboratory, we experimentally determined the effects of HMF on the longevity and midgut integrity of worker Apis mellifera carnica by feeding bees standard diets containing five concentrations of HMF (100, 500, 1000, and 1500 ppm). Simultaneously, we also examined HMF’s effect on Nosema ceranae spore counts within infected honey bees. We performed an immunohistochemical analysis of the honey bee midgut to determine possible changes at the cellular level. No correlation was established between HMF concentration and N. ceranae spore counts. Negative effects of HMF on bees were not observed in the first 15 days of exposure. However, after 15 to 30 days of exposure, HMF caused midgut cells to die and an increased mortality of honey bee workers across treatment groups.


Sign in / Sign up

Export Citation Format

Share Document