scholarly journals Climate Change and Atlantic Multidecadal Oscillation as Drivers of Recent Declines in Coral Growth Rates in the Southwestern Caribbean

2019 ◽  
Vol 6 ◽  
Author(s):  
Luis D. Lizcano-Sandoval ◽  
Ángela Marulanda-Gómez ◽  
Mateo López-Victoria ◽  
Alberto Rodriguez-Ramirez
2018 ◽  
pp. 76-94 ◽  
Author(s):  
I. A. Makarov ◽  
C. Henry ◽  
V. P. Sergey

The paper applies multiregional CGE Economic Policy Projection and Analysis (EPPA) model to analyze major risks the Paris Agreement on climate change adopted in 2015 brings to Russia. The authors come to the conclusion that if parties of the Agreement meet their targets that were set for 2030 it may lead to the decrease of average annual GDP growth rates by 0.2-0.3 p. p. Stricter climate policies beyond this year would bring GDP growth rates reduction in2035-2050 by additional 0.5 p. p. If Russia doesn’t ratify Paris Agreement, these losses may increase. In order to mitigate these risks, diversification of Russian economy is required.


Author(s):  
Laura Härkönen ◽  
Pauliina Louhi ◽  
Riina Huusko ◽  
Ari Huusko

Understanding the dynamic nature of individual growth in stream-dwelling salmonids may help forecast consequences of climate change on northern fish populations. Here, we performed an experimental capture-mark-recapture study in Atlantic salmon to quantify factors influencing wintertime growth variation among juveniles under different scenarios for ice cover reduction. We applied multiple imputation to simulate missing size observations for unrecaptured fish, and to account for individual-level variation in growth rates. The salmon parr exhibited substantial body length shrinkage in early winter, suppressed growth through mid-winter, and increasing growth rates in late winter and particularly in spring. Unexpectedly, the presence of ice cover had no direct effects on wintertime growth. Instead, our results implied increasing energetic costs with reducing ice cover: individuals exposed to absent or shortened ice-covered period gained mass at a lowered rate in spring whereas the present, long ice-covered period was followed by rapid growth. This study emphasizes natural resilience of Atlantic salmon to wintertime environmental variation which may help the species to cope with the reductions in ice cover duration due to climate change.


2015 ◽  
Vol 12 (14) ◽  
pp. 4235-4244 ◽  
Author(s):  
M. Pančić ◽  
P. J. Hansen ◽  
A. Tammilehto ◽  
N. Lundholm

Abstract. The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20–50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20–37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.


2020 ◽  
Vol 98 (7) ◽  
pp. 481-494
Author(s):  
M.C. Risoli ◽  
A. Baldoni ◽  
J. Giménez ◽  
B.J. Lomovasky

Morphometric relationships and age and growth rates of the yellow clam (Mesodesma mactroides Reeve, 1854 = Amarilladesma mactroides (Reeve, 1854)) were compared in two populations from Argentina: Santa Teresita (36°32′00″S) and Mar del Plata (37°57′52″S). The Santa Teresita clams were heavier (shell, soft parts) than the Mar del Plata clams. Cross sections stained with Mutvei’s solution and acetate peels revealed an internal shell growth pattern of well-defined slow-growing translucent bands and alternating fast-growing opaque bands. Translucent bands (clusters) representing external rings were formed mostly during October in both sites, coinciding with gonadal maturation processes and spawning. Data confirm the annual formation of translucent bands in this species. Comparison of growth parameters showed a higher growth rate k and lower maximum age in Mar del Plata (8 years) than in Santa Teresita (9 years), which could be triggered by differences in salinity between localities due to the influence of the Rio de la Plata estuary, which is strongly linked to climate variability. Shell mass condition index and Oceanic Niño Index were negatively correlated, showing the influence of El Niño in shell properties of the species. Considering that events are becoming more intense and frequent, changes in growth rates and shell properties of Santa Teresita’s population could be expected to be more vulnerable under climate change.


2017 ◽  
Vol 284 (1851) ◽  
pp. 20170053 ◽  
Author(s):  
Maria Dornelas ◽  
Joshua S. Madin ◽  
Andrew H. Baird ◽  
Sean R. Connolly

Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.


2014 ◽  
Vol 226 (3) ◽  
pp. 187-202 ◽  
Author(s):  
Janice M. Lough ◽  
Neal E. Cantin

2000 ◽  
Vol 40 (5) ◽  
pp. 404-425 ◽  
Author(s):  
Evan N Edinger ◽  
Gino V Limmon ◽  
Jamaluddin Jompa ◽  
Wisnu Widjatmoko ◽  
Jeffrey M Heikoop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document