scholarly journals High-Resolution Sampling of a Broad Marine Life Size Spectrum Reveals Differing Size- and Composition-Based Associations With Physical Oceanographic Structure

2020 ◽  
Vol 7 ◽  
Author(s):  
Adam T. Greer ◽  
John C. Lehrter ◽  
Benjamin M. Binder ◽  
Aditya R. Nayak ◽  
Ranjoy Barua ◽  
...  

Observing multiple size classes of organisms, along with oceanographic properties and water mass origins, can improve our understanding of the drivers of aggregations, yet acquiring these measurements remains a fundamental challenge in biological oceanography. By deploying multiple biological sampling systems, from conventional bottle and net sampling to in situ imaging and acoustics, we describe the spatial patterns of different size classes of marine organisms (several microns to ∼10 cm) in relation to local and regional (m to km) physical oceanographic conditions on the Delaware continental shelf. The imaging and acoustic systems deployed included (in ascending order of target organism size) an imaging flow cytometer (CytoSense), a digital holographic imaging system (HOLOCAM), an In Situ Ichthyoplankton Imaging System (ISIIS, 2 cameras with different pixel resolutions), and multi-frequency acoustics (SIMRAD, 18 and 38 kHz). Spatial patterns generated by the different systems showed size-dependent aggregations and differing connections to horizontal and vertical salinity and temperature gradients that would not have been detected with traditional station-based sampling (∼9-km resolution). A direct comparison of the two ISIIS cameras showed composition and spatial patchiness changes that depended on the organism size, morphology, and camera pixel resolution. Large zooplankton near the surface, primarily composed of appendicularians and gelatinous organisms, tended to be more abundant offshore near the shelf break. This region was also associated with high phytoplankton biomass and higher overall organism abundances in the ISIIS, acoustics, and targeted net sampling. In contrast, the inshore region was dominated by hard-bodied zooplankton and had relatively low acoustic backscatter. The nets showed a community dominated by copepods, but they also showed high relative abundances of soft-bodied organisms in the offshore region where these organisms were quantified by the ISIIS. The HOLOCAM detected dense patches of ciliates that were too small to be captured in the nets or ISIIS imagery. This near-simultaneous deployment of different systems enables the description of the spatial patterns of different organism size classes, their spatial relation to potential prey and predators, and their association with specific oceanographic conditions. These datasets can also be used to evaluate the efficacy of sampling techniques, ultimately aiding in the design of efficient, hypothesis-driven sampling programs that incorporate these complementary technologies.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4084
Author(s):  
Xin-Yu Zhao ◽  
Li-Jing Li ◽  
Lei Cao ◽  
Ming-Jie Sun

Digital cameras obtain color information of the scene using a chromatic filter, usually a Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter array and the detector array introduces frequency aliasing in sampling and color misregistration during demosaicking process which causes degradation of image quality. Inspired by the biological structure of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval. Experiments were performed with a single-pixel imaging system using the multi-hyperuniform chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at 32 × 32 pixel resolution. By comparing the experimental results with the images captured with a conventional digital camera, it has been demonstrated that the proposed imaging system forms images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed verified here could provide insights for the design and the manufacturing of future bionic imaging sensors.


CytoJournal ◽  
2010 ◽  
Vol 7 ◽  
pp. 3 ◽  
Author(s):  
G. Denice Smith ◽  
Matt Riding ◽  
Kim Oswald ◽  
Joel S. Bentz

We have implemented an interactive imaging system for the interpretation of UroVysion fluorescence in situ hybridization (FISH) to improve throughput, productivity, quality control and diagnostic accuracy. We describe the Duet imaging system, our experiences with implementation, and outline the financial investment, space requirements, information technology needs, validation, and training of cytotechnologists needed to integrate such a system into a cytology laboratory. Before purchasing the imaging system, we evaluated and validated the instrument at our facility. Implementation required slide preparation changes, IT modifications, development of training programs, and revision of job descriptions for cytotechnologists. A darkened room was built to house the automated scanning station and microscope, as well as two imaging stations. IT changes included generation of storage for archival images on the LAN, addition of external hard drives for back-up, and changes to cable connections for communication between remote locations. Training programs for cytotechnologists, and pathologists/fellows/residents were developed, and cytotechnologists were integrated into multiple steps of the process. The imaging system has resulted in increased productivity for pathologists, concomitant with an expanded role of cytotechnologists in multiple critical steps, including FISH, scan setup, reclassification, and initial interpretation.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Roozbeh (Ross) Salary ◽  
Jack P. Lombardi ◽  
Darshana L. Weerawarne ◽  
M. Samie Tootooni ◽  
Prahalada K. Rao ◽  
...  

Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging as the process of choice for the fabrication of a broad spectrum of electronics, such as sensors, transistors, and optoelectronic devices. However, AJP is a highly complex process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring and control in AJP is a bourgeoning need. The goal of this work is to establish an integrated, smart platform for in situ and real-time monitoring of the functional properties of AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-input, single-output (MISO) intelligent learning model—based on sparse representation classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as well as in real-time. The aim is to classify the resistance of printed electronic traces (lines) as a function of AJP process parameters and the trace morphology characteristics (e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line morphology is captured using a series of images, acquired: (i) in situ via an integrated high-resolution imaging system and (ii) in real-time via the AJP standard process monitor camera. Utilizing image processing algorithms developed in-house, a wide range of 2D and 3D morphology features are extracted, constituting the primary source of data for the training, validation, and testing of the SRC model. The four-point probe method (also known as Kelvin sensing) is used to measure the resistance of the deposited traces and as a result, to define a priori class labels. The results of this study exhibited that using the presented approach, the resistance (and potentially, other functional properties) of printed electronics can be estimated both in situ and in real-time with an accuracy of ≥ 90%.


2021 ◽  
Author(s):  
Bodo Felsner ◽  
Volodymyr Bon ◽  
Jack D. Evans ◽  
Friedrich Schwotzer ◽  
Ronny Grünker ◽  
...  

A guest-induced flexibility in the framework DUT-13 was investigated in situ to analyze the breathing mechanism upon physisorption of nitrogen (77 K) and n-butane (273 K). The crystal structure of cp phase, solved from PXRD data using the computation-assisted semiempirical approach, shows two times smaller pore volume, compared to the op phase, which is consistent with the corresponding isotherms. The contraction mechanism is mainly based on the conformational isomerism of the benztb4- linker, which transforms from a staggered conformation in op phase to a more eclipsed in cp phase, leading to the contraction of the larger pore. A nearly complete op → cp → op transition was observed in the case of n-butane adsorption at 273 K, while in case of weakly interacting nitrogen molecules a portion of the sample remains in the op phase in the entire pressure range. Apparently, in case of DUT-13 the contraction is crystallite size-dependent, similarly as in a number of other switchable MOFs, which should be investigated more in detail in the future. Methane adsorption at varying temperatures showed a wide hysteresis at the temperatures between 111 K and 140 K. The hysteresis width decreases until it disappears completely at 170 K leading to a reversible isotherm, typical for rigid frameworks. The fact that breathing is observed in a broader temperature range in comparison to DUT‑49 demonstrates that thermodynamics and kinetics favour the DUT-13 contraction. Linker and hinges in DUT-13 are not stiff enough to support the metastable states required for NGA.


Author(s):  
Risaku Toda ◽  
Scott Moreland ◽  
Mircea Badescu ◽  
Paul Backes ◽  
Vladimir Arutyunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document