scholarly journals Does Warming Enhance the Effects of Eutrophication in the Seagrass Posidonia oceanica?

2020 ◽  
Vol 7 ◽  
Author(s):  
Jessica Pazzaglia ◽  
Alex Santillán-Sarmiento ◽  
Stephanie B. Helber ◽  
Miriam Ruocco ◽  
Antonio Terlizzi ◽  
...  

Seagrass meadows are disappearing at rates comparable to those reported for mangroves, coral reefs, and tropical rainforests. One of the main causes of their decline is the so-called cultural eutrophication, i.e., the input of abnormal amounts of nutrients derived from human activities. Besides the impact of eutrophication at a local scale, the occurrence of additional stress factors such as global sea warming may create synergisms in detriment of seagrass meadows’ health. In the present study, we aimed to evaluate if plants undergoing chronic cultural eutrophication and plants growing in relatively pristine waters are more (or less) sensitive to heat stress, nutrient load and the combination of both stressors. To address this question, a mesocosm experiment was conducted using Posidonia oceanica collected from two environments with different nutrients load history. Plants were exposed in controlled conditions to high nutrient concentrations, increased temperature and their combination for 5 weeks, to assess the effect of the single stressors and their interaction. Our results revealed that plants experiencing chronic cultural eutrophication (EU) are more sensitive to further exposure to multiple stressors than plants growing in oligotrophic habitats (OL). OL and EU plants showed different morphological traits and physiological performances, which corroborates the role of local pressures in activating different strategies in response to global environmental changes. EU-plants appeared to be weaker during the treatments, showing the greatest percentage of mortality, particularly under increased temperature. Temperature and nutrient treatments showed opposite effects when tested individually and an offset response when combined. The activation of physiological strategies with high energetic expenses to cope with excess of nutrients and other stressors, could affect plants present and future persistence, particularly under eutrophic conditions. Our results represent a step forward in understanding the complex interactions that occur in natural environments. Moreover, unraveling intraspecific strategies and the role of local acclimation/adaptation in response to multiple stressors could be crucial for seagrass conservation strategies under a climate change scenario.

2019 ◽  
Vol 83 (4) ◽  
pp. 349
Author(s):  
Inés Castejón-Silvo ◽  
Damià Jaume ◽  
Jorge Terrados

The functional importance of herbivory in seagrass beds is highly variable among systems. In Mediterranean seagrass meadows, macroherbivores, such as the fish Sarpa salpa and the sea urchin Paracentrotus lividus, have received most research attention, so published evidence highlights their importance in seagrass consumption. The role of small crustaceans in seagrass consumption remains less studied in the region. Herbivory on Posidonia oceanica seeds has not previously been reported. In turn, crustacean herbivory on P. oceanica leaves is broadly recognized, although the species feeding on the seagrass are mostly unknown (except for Idotea baltica). This work evaluates P. oceanica consumption by two species of amphipod crustaceans commonly found in seagrass meadows. Ampithoe ramondi and Gammarella fucicola actively feed on P. oceanica leaves and seeds. Both species preferred seeds to leaves only when the seed coat was damaged. This study provides the first direct evidence of consumption of P. oceanica seeds by the two named amphipod crustaceans, and confirms that they also consume leaves of this seagrass species.


2015 ◽  
Author(s):  
Gabriele Procaccini ◽  
Emanuela Dattolo ◽  
Chiara Lauritano ◽  
Miriam Ruocco ◽  
Lazaro Marin-Guirao

Seagrass meadows are among the most productive ecosystems, with Posidonia oceanica being the most important species along the Mediterranean coastline. This species forms extensive mono-specific meadows that are extremely sensitive to medium-high levels of disturbance and are being threatened by fast environmental changes caused by global warming and increasing human activities. The impact can either reflect in higher turbidity along the water column and in increased UV radiation, making the light availability one of the most important factors affecting P. oceanica distribution. Plants developed mechanisms of adaptations at multiple levels to track and cope with fluctuations and changes in the light environment. At molecular level, the modulation of gene expression in response to environmental changes allows plants to optimize the utilization of light energy for growth and to prevent damages due to its excess. To detect the relevant molecular adaptation strategies evolved by P. oceanica and to assess the plasticity showed in the acclimation under different light regimes, we are employing studies both in natural and controlled conditions. Here, we describe the differences in photo acclimation of plants living along the bathymetric cline observed in field and in a common garden experiment in mesocosms, after the exposition to contrasting light regimes. Using a transcriptional approach (both RT -qPCR and RNA-seq) coupled with a physiological one, we are also testing potential divergences existing among populations and individuals related to light sensitivity. These data should supply new insights for the management of seagrasses ecosystems, for the development of most successful transplantation strategies and ultimately for conservation of biodiversity of these precious ecosystems.


2015 ◽  
Author(s):  
Chiara Lauritano ◽  
Fabio Bulleri ◽  
Chiara Ravaglioli ◽  
Laura Tamburello ◽  
Maria Cristina Buia ◽  
...  

Studies on stress genes are fundamental to understand how marine organisms maintain or re-estabilish a normal metabolism in face of physical or chemical disturbances. Aquatic organisms are in fact constantly exposed to environmental stimuli and natural and/or dissolved anthropogenic variables/compounds, including both physical (e.g. cold, heat, salinity and pH) and chemical (e.g. heavy metals, hydrocarbons and other pollutants) stressors. Human activities have intensified in coastal area, increasing the number of stressors that act simultaneously over natural systems (e.g. ocean acidification and eutrophication). In this study, Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) was used to characterize metabolic processes at the cellular level in response to natural CO2-enrichment and artificial nutrient-enrichment in proximity of a volcanic vent located in the Ischia island (Gulf of Naples, Tyrrhenian Sea). We evaluated the differential expression of selected stress genes in the seagrass Posidonia oceanica collected in a control site and in the vicinity of the CO2 vents. In each location, plants experienced three different nutrient concentrations: natural (without adding any nutrient), low- and high- enrichments. Results show that nutrient addition mainly induced an over-expression of genes codifying for antioxidant proteins, in sites not influenced by CO2-enrichment. In particular, we observed an increase in the activity of glutathione synthase, responsible of the synthesis of the antioxidant protein glutathione. In addition, we also observed the up-regulation of glutathione peroxidase, catalase, ascorbate reductase and cythocrome P450. When analysing the effects of nutrients in the acidified site, trends in expression changes were similar, but expression levels were notably lower. Interestingly, the over-expression of the above mentioned genes was always higher at low nutrient exposure, while other antioxidant enzymes (i.e. glutathione S-transferase and glutathione reductase) were more activated in high nutrient conditions. The difference in response between acidified and control site and in different nutrient conditions seems to derive from the combined affect of multiple stressors, in a way that still remains obscure. Effects of different stressors should be disentangled in order to identify stress-specific genes as early indicators of stressful conditions at sea and during laboratory experiments.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ping Gui ◽  
Xiaotong Ji ◽  
Yanlan Mei ◽  
Zhicheng Quan

Purpose Community governance plays an important role in the prevention and control of the Coronavirus disease 2019 (COVID-19) pandemic in China. Community workers, the main executors in community governance, experience a huge amount of stress, which affects their physical and mental health. Thus, it is crucial to pay more attention to the stressors and stress responses of community workers and propose strategies to alleviate such responses. This paper aims to analyze the work stress of community workers during the COVID-19 pandemic in China. Design/methodology/approach Based on a questionnaire survey of 602 community workers during COVID-19 in China, the four main stressors and 14 stress factors of community workers were identified and six factors at three levels of stress responses were defined. A stress analysis model is proposed that tests the mediating role of psychological capital and the moderating role of organizational climate. Findings The results show that stressors influence stress responses through the moderating role of psychological capital, organizational climate plays a negative mediator role between stressors and psychological capital and the main stressors for community workers are work, safety and performance stress. Originality/value This paper contributes to existing research because it offers suggestions for reducing the impact of stress on the community workers during the COVID-19 pandemic. Further, it can promote the control and prevention of the COVID-19.


2021 ◽  
Author(s):  
Alice Madonia ◽  

<p><em>Posidonia oceanica </em>(L.) Delile meadows are considered as the most productive ecosystems of the Mediterranean basin, sequestering and storing significant amount of blue carbon in their rich organic sediments and in their living and non-living biomass and these meadows are identified as a priority habitat type for conservation under the Habitat Directive (Dir 92/43/CEE). Despite the importance of the ecosystem services it provides, this habitat is disappearing at a rate four times as high as that of terrestrial forests, experiencing an alarming reduction due to the impacts of human activities in coastal areas, especially in the north-western side of the Mediterranean Sea. To face this issue, the SeaForest Life project foresees the quantification of carbon deposits and their rate of change related to habitat degradation specifically focusing on the effects caused by boat’s anchors and moorings. The project is realized in the Archipelago of la Maddalena National Park, the Asinara National Park and the Cilento, Vallo di Diano and Alburni National Park, for which ad hoc management plans of mooring are going to be adopted to reduce the impact of this practice on the seagrass meadows. As a first step, an updating of habitat 1120*’s cartography in each of the Marine Protected Areas engaged in the project have been fulfilled, using high definition multispectral imagery. Furthermore, monitoring of the areas with the highest attendance of the anchorages was carried out through the use of medium resolution satellite multi-spectral images using the infrared band, to identify and quantify the degradation and the state of conservation of the <em>P.oceanica</em> meadows present in the investigated areas. The updated cartography has been used to implement the InVEST Coastal Blue Carbon (CBC) which attempts to predict the sequestration, storage and, when degraded, the emissions of carbon by coastal ecosystems, so representing a useful tool for the analysis of the ecological and economic effects of the degradation processes (boats anchoring) and mitigation measures (anchor management plan and eco friendly moorings). Up to now, the InVEST-CBC model has estimated a CO<sub>2</sub> loss due to boats anchoring equal to 2300 tCO<sub>2</sub>/year, using stock and flow data in soil and biomass obtained from the results of the Life Blue Natura project and<em> P. oceanica</em> samples collected in the Cilento National Park. In the future, the results of the model will be improved with data collected in the other two project areas, also through the use of innovative instrumentation. Moreover, the scenarios with the implementation of the mooring management plans will be analyzed in the three study areas. The dataset obtained by the model is being used to define a standard protocol for the estimation of CO<sub>2</sub> fixation by <em>P. oceanica </em>meadows in the Mediterranean Sea. Such protocol will be fundamental for the realization of a national IT-based platform for a voluntary based carbon market to sell and acquire the carbon credits generated by the SeaForest Life project activities, to be extended to all the Mediterranean countries and to be scaled up to new protected marine areas.</p>


2013 ◽  
Vol 790 ◽  
pp. 386-390
Author(s):  
Zhi Hong Dai ◽  
Miao Yu ◽  
Xi Rong Zhao

City isnt only relying on the geological environment, but also in constantly changing geological environment, city construction activities are one of the geological battalion strengths. City construction is equivalent to loading in constantly on the geological bodies which the city depends on. The transmission and distribution of Additional stress generated by load in geotechnical body is the root cause of security geological impact. The article created the models that load transmits in geotechnical medium, and use laboratory experiments to study the role of the load on the geotechnical body, on the basis of laboratory we analyzed the expression of city construction acts, including the conversion methods, mechanisms of the action, features of the action.


2011 ◽  
Vol 15 ◽  
pp. 47-51
Author(s):  
P.M.S. Lane

This essay contains personal observations and interpretations by the author on the persistence of pastures in the northern North Island. Key pasture stress factors are identified as the increase of farming intensity over the past two decades, the impact of pasture renewal techniques and the role of pasture species on insect pest (particularly black beetle and clover root weevil) interactions. Keywords: insect pests, soil fertility, pasture renewal, cultivars, endophyte


2014 ◽  
Vol 13 (3) ◽  
pp. 91-99 ◽  
Author(s):  
V. A. Kutyakov ◽  
A. V. Salmina

The basic information on the classification, structure, induction and degradation, functions of the protein family – metallothionein (MT), including CNS in health and disease are presented in this review. It was found that four major isoforms of metallothionein perform different biological roles, are localized in dif- ferent tissues. Induction of MT is a universal reaction to the impact of a variety of stress factors. In recent years, understanding of the role of metallothioneins in metal homeostasis in the tissues in normal and pathological conditions have changed significantly. Notes polyfunctionality metallothioneins (transport of metal ions, maintaining redox reactions, tread, signal, modulated and regulatory functions) and their im- pact on basic cellular functions such as proliferation, differentiation, programmed cell death. Further- more, a special role is shown MT in the pathogenesis of cardiovascular, neurodegenerative and neoplastic disorders.Currently, these molecules are increasingly considered as potential targets for therapy of a wide range of diseases and the development of targeted approaches to the regulation of expression of MT – one of the promising areas of pharmacology and toxicology. Stressed the safety of metallothioneins as therapeutic agents.


2015 ◽  
Author(s):  
Chiara Lauritano ◽  
Fabio Bulleri ◽  
Chiara Ravaglioli ◽  
Laura Tamburello ◽  
Maria Cristina Buia ◽  
...  

Studies on stress genes are fundamental to understand how marine organisms maintain or re-estabilish a normal metabolism in face of physical or chemical disturbances. Aquatic organisms are in fact constantly exposed to environmental stimuli and natural and/or dissolved anthropogenic variables/compounds, including both physical (e.g. cold, heat, salinity and pH) and chemical (e.g. heavy metals, hydrocarbons and other pollutants) stressors. Human activities have intensified in coastal area, increasing the number of stressors that act simultaneously over natural systems (e.g. ocean acidification and eutrophication). In this study, Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) was used to characterize metabolic processes at the cellular level in response to natural CO2-enrichment and artificial nutrient-enrichment in proximity of a volcanic vent located in the Ischia island (Gulf of Naples, Tyrrhenian Sea). We evaluated the differential expression of selected stress genes in the seagrass Posidonia oceanica collected in a control site and in the vicinity of the CO2 vents. In each location, plants experienced three different nutrient concentrations: natural (without adding any nutrient), low- and high- enrichments. Results show that nutrient addition mainly induced an over-expression of genes codifying for antioxidant proteins, in sites not influenced by CO2-enrichment. In particular, we observed an increase in the activity of glutathione synthase, responsible of the synthesis of the antioxidant protein glutathione. In addition, we also observed the up-regulation of glutathione peroxidase, catalase, ascorbate reductase and cythocrome P450. When analysing the effects of nutrients in the acidified site, trends in expression changes were similar, but expression levels were notably lower. Interestingly, the over-expression of the above mentioned genes was always higher at low nutrient exposure, while other antioxidant enzymes (i.e. glutathione S-transferase and glutathione reductase) were more activated in high nutrient conditions. The difference in response between acidified and control site and in different nutrient conditions seems to derive from the combined affect of multiple stressors, in a way that still remains obscure. Effects of different stressors should be disentangled in order to identify stress-specific genes as early indicators of stressful conditions at sea and during laboratory experiments.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2320 ◽  
Author(s):  
Iwona Morkunas ◽  
Agnieszka Woźniak ◽  
Van Mai ◽  
Renata Rucińska-Sobkowiak ◽  
Philippe Jeandet

The present review discusses the impact of heavy metals on the growth of plants at different concentrations, paying particular attention to the hormesis effect. Within the past decade, study of the hormesis phenomenon has generated considerable interest because it was considered not only in the framework of plant growth stimulation but also as an adaptive response of plants to a low level of stress which in turn can play an important role in their responses to other stress factors. In this review, we focused on the defence mechanisms of plants as a response to different metal ion doses and during the crosstalk between metal ions and biotic stressors such as insects and pathogenic fungi. Issues relating to metal ion acquisition and ion homeostasis that may be essential for the survival of plants, pathogens and herbivores competing in the same environment were highlighted. Besides, the influence of heavy metals on insects, especially aphids and pathogenic fungi, was shown. Our intention was also to shed light on the relationship between heavy metals deposition in the environment and ecological communities formed under a strong selective pressure.


Sign in / Sign up

Export Citation Format

Share Document